Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T09:06:18.362Z Has data issue: false hasContentIssue false

Surface characteristics and wetting behavior of carbon nanotubes

Published online by Cambridge University Press:  01 February 2011

Asa H. Barber
Affiliation:
Wagner Department of Materials and Interfaces &, Weizmann Institute of Science, Rehovot 76100 ISRAEL
Luqi Liu
Affiliation:
Wagner Department of Materials and Interfaces &, Weizmann Institute of Science, Rehovot 76100 ISRAEL
Sidney R. Cohen
Affiliation:
Chemical Research Support, Weizmann Institute of Science, Rehovot 76100 ISRAEL
H. Daniel
Affiliation:
Wagner Department of Materials and Interfaces &, Weizmann Institute of Science, Rehovot 76100 ISRAEL
Get access

Abstract

The wetting properties and surface characteristics of individual carbon nanotubes are elucidated by immersing the nanotube into various organic liquid. The resultant force acting on the nanotube can be used to evaluate a liquid contact angle at the nanotube surface from classical methods. This technique was shown to be accurate enough to discern differences in wetting behavior due to both structural and chemical changes in the nanotube structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yu, M-F., et al., Science 287, 637 (2000)Google Scholar
2. Yu, M-F., Files, B. S., Arepalli, S. & Ruoff, R. S., Phys. Rev. Lett. 84, 5552 (2000)Google Scholar
3. Demczyk, B. G. et al., Mat. Sci. Eng. A 334, 173 (2002)Google Scholar
4. Treacy, M. M. J., Ebbesen, T. W. & Gibson, J. M., Nature 381, 678 (1996)Google Scholar
5. Krishnan, A. et al, Phys. Rev. B. 58, 14013 (1998)Google Scholar
6. Wong, W., Sheehan, P. E. & Lieber, C. M., Science 277, 1971 (1997)Google Scholar
7. Pisanova, E. & Zhandarov, S., J. Adhesion, 75, 89 (2001)Google Scholar
8. Nygard, P., Grundke, K., Mader, E. & Bellmann, C., J. Adh. Sci. Tech., 16, 1781 (2002)Google Scholar
9. Bismarck, A., Pfeifer, G. & Springer, J., J. Adh. Sci. Tech., 14, 661 (2000)Google Scholar
10. Hsieh, Y. L., Sq, X. U. & Hartzell, M. J., J. Adh. Sci. Tech., 5, 1023 (1991)Google Scholar
11. Felix, J. M. & Gatenholm, P., J. Appl. Polym. Sci., 42, 609 (1991)Google Scholar
12. Gogotsai, Y., Liberia, J. A. & Yoshimura, M., J. Mat. Res., 15, 2591 (2000)Google Scholar
13. Pia Rossi, M. et al, Nanoletters, 4, 989 (2004)Google Scholar
14. Barraza, H. J. et al, Langmuir, 17, 5288 (2001)Google Scholar
15. Barber, A. H., Cohen, S. R. & Wagner, H. D., Phys. Rev. Lett. 92, 186103 (2004) 16 Google Scholar
Nishijima, H. et al., Appl. Phys. Lett., 74, 4061 (1999)Google Scholar
17. Qin, Y. et al., Chem. Mat, 15, 3256 (2003)Google Scholar
18. Sader, J. E., Chon, J. W. M. & Mulvaney, P., Rev. Sci. Instr. 70, 3967 (1999)Google Scholar