Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-20T09:14:06.244Z Has data issue: false hasContentIssue false

Surface Alloy Phases of Immiscible Metals: A Semiempirical Study of Au Growth on Ni(110)

Published online by Cambridge University Press:  21 February 2011

Guillermo Bozzolo
Affiliation:
Analex Corporation, 3001 Aerospace Parkway, Brook Park, OH, 44142–1003
Rodrigo Ibañez-Meier
Affiliation:
WSA, Inc., Palo Alto, CA 94301.
John Ferrante
Affiliation:
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH 44135.
Get access

Abstract

Recent experiments using scanning tunneling microscopy (STM) show evidence for the formation of surface alloys of metals with a broad miscibility gap. Such is the case for Au deposited on Ni(110), where STM images indicate that at low coverage Au atoms squeeze Ni atoms out of the surface layer forming a surface alloy while the Ni atoms form islands on the surface. We present results of a theoretical modelling of this phenomenon using the BFS method for alloys. We find evidence which strongly support the conclusions drawn from experiment. Ni island formation and alternative short range order patterns are discussed, as well as the transition from a surface alloy phase at low coverages to phase separation at higher coverages.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pleth Nielsen, L., Besenbacher, F., Stensgaard, I., Laegsgaard, E., Engdahl, C., Stoltze, P., Jacobsen, K. W. and Nørskov, J. K., Phys. Rev. Lett. 71, 754 (1993);Google Scholar
Pleth Nielsen, L., Stensgaard, I., Lagsgaard, E. and Besenbacher, F., Surf. Sci. 307–309, 544 (1994).Google Scholar
2. Boerma, D. O., Dorenbos, G., Wheatley, G. H. and Buck, T. M., Surf. Sci. 307–309, 674 (1994).Google Scholar
3. Bozzolo, G., Ferrante, J. and Smith, J. R., Phys. Rev. B 45, 493 (1992);Google Scholar
Bozzolo, G. and Ferrante, J., Ser. Met. Mater. 26, 1275 (1992); Phys. Rev. B 45, 12191 (1992); Phys. Rev. B 46, 8600 (1992); Ultramicroscopy 42–44, 55 (1992);Google Scholar
Bozzolo, G., Good, B. and Ferrante, J., Surf. Sci. 289, 169 (1993);Google Scholar
Good, B., Bozzolo, G. and Ferrante, J., Phys. Rev. B 48, 18284 (1993);Google Scholar
Kobistek, R., Bozzolo, G., Ferrante, J. and Schlosser, H., Surf. Sci. 307–309, 390 (1994).Google Scholar
4. Smith, J. R., Perry, T., Banerjea, A., Ferrante, J. and Bozzolo, G., Phys. Rev. B 44, 6444 (1991)Google Scholar
5. Rose, J. H., Smith, J. R. and Ferrante, J., Phys. Rev. B 28, 1835 (1983);Google Scholar
Rose, J. H., Smith, J. R., Guinea, F. and Ferrante, J., Phys. Rev. B 29, 2963 (1984).Google Scholar