Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:30:55.409Z Has data issue: false hasContentIssue false

Surface Acoustic Wave Detection of Large Lattice Relaxation of Metastable EL2 in LT-GaAs

Published online by Cambridge University Press:  15 February 2011

Ken Khachaturyan
Affiliation:
Dept. of Materials Science and Mineral Engineering, University of California and Materials Science Division, Lawrence Berkeley Laboratory, Berkeley, CA
Eicke R. Weber
Affiliation:
Dept. of Materials Science and Mineral Engineering, University of California and Materials Science Division, Lawrence Berkeley Laboratory, Berkeley, CA
Richard M. White
Affiliation:
Berkeley Sensor & Actuator Center, Electronics Research Laboratory, Dept. of Electrical Engineering & Computer Sciences, University of California, Berkeley, CA
Get access

Abstract

For the first time, surface acoustic waves (SAWs) were used to study the lattice relaxation of metastable defects. A persistent increase of as much as 0.4% of the SAW velocity at low temperatures was observed after illumination of LT-GaAs; this increase could be quenched by annealing at 120–130°K. This behaviour is caused by the metastable transition of EL2-like AsGa defects and constitutes the direct experimental proof of the illumination induced large lattice relaxation of this defect.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Smith, F. W., Calawa, A. R., Chen, C. L., Manfra, M. J., and Mahoney, L. J., IEEE Electron Device Lett. 9, 77 (1988).Google Scholar
2.Kaminska, M., Liliental-Weber, Z., Weber, E. R., George, T., Kortright, J. B., Smith, F. W., Tsaur, B.-Y., and Calawa, A. R., Appl.Phys.Lett. 54 1881 (1989).Google Scholar
3.Kaminska, M., Weber, E. R., Liliental-Weber, Z., Leon, R., Rek, Z. U., J. Vac. Sci. Technol. B 7,710 (1989)Google Scholar
4.Weber, E. R., Ennen, H., Kaufmann, U., Windscheif, J., Schneider, J., Wosinski, T., J. Appl. Phys. 53 6140 (1982).Google Scholar
5.Martin, G. M., Appl. Phys. Lett. 39,747 (1981).Google Scholar
6.Kaminska, M., Weber, E. R., Yu, K. M., Leon, R., George, T., Smith, F. W., and Calawa, A. R., in: Semi-Insulating III/V Materials 1990, Eds. Milnes, A. G. and Milner, C. J. (Adam Hilger, Bristol 1990), p. 1 1 1.Google Scholar
7.Rayleigh, Lord, Proc.London Math.Soc..7, 4 (1885).Google Scholar
8.M.White, R., Proc. IEEE 58 1238 (1970).Google Scholar
9.White, R. M. and Voltmer, F. M., Appl. Phys. Lett. 7, 314 (1965).Google Scholar
10.Nieuwenhuizen, M. S. and Venema, A., Sensors and Materials 5 261 (1989)Google Scholar
11.Lewis, M. F., Ultrasonics, p.115, May 1974.Google Scholar
12.Brophy, M. J. and Granato, A. V., J. de Physique, C10–541, suppl. n12, 46 (1985).Google Scholar
13.Dabrowski, J. and Sheffler, M., Phys. Rev. Lett. 60, 2183 (1988).Google Scholar