Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-06T05:28:39.507Z Has data issue: false hasContentIssue false

Suppression of Marangoni Convection With Oxide Films

Published online by Cambridge University Press:  15 February 2011

J. D. Verhoeven
Affiliation:
Ames Laboratory* and Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011.
M. A. Noack
Affiliation:
Ames Laboratory* and Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011.
A. J. Bevolo
Affiliation:
Ames Laboratory* and Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011.
Get access

Abstract

This research is an effort to determine whether surface tension driven convection in molten tin can be eliminated by the formation of one to several monolayers of oxide on the molten tin surface. Initial work is presented describing Auger and electron loss spectroscopies used to detect SnD and SnO2 on molten tin surfaces in a UHV system; Progress on efforts to produce and monitor controlled oxide layers of 8 to 20 Å upon floating zones in a disk geometry is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Operated for the U.S. Department of Energy by Iowa State University under contract No. W-7405-eng-82.

References

REFERENCES

1.Chang, C. E. and Wilcox, W. R., J. Cry. G. 28, 8 (1975);Google Scholar
Clark, P. A. and Wilcox, W. R., J. Cry. G. 50, 461 (1980).Google Scholar
2.Schwabe, D., Scharmann, A., Preisser, F. and Oeder, R., J. Cry. G. 43, 305 (1978).Google Scholar
3.Chun, C. H. and Wuest, W., Acta Astronautica 5, 681 (1978).Google Scholar
4.Pietenpol, W. B. and Miley, H. A., Phy. Rev. 30, 697 (1927).Google Scholar
5.Sprenger, H., Erben, E., Wortmann, J. and Schweitzer, R., Acta Astronautica 5, 625 (1978).Google Scholar
6.Verhoeven, J. D. and Noack, M., Annual Report, Float Zone Experiments in Space, Ames Laboratory, Iowa State University (1980).Google Scholar
7.Lau, C. L. and Wertheim, G. K., J. Vac. Sci. Tech. 15, 622 (1978).10.1116/1.569642Google Scholar
8.Powell, R. A., Appl. Surf. Sci 2, 397 (1979).Google Scholar
9.Barlow, S. M., Bayat-Mokhtari, P. and Gallon, T. E., J. Phy. C. 12, 5577 (1979).Google Scholar
10.Bevolo, A., Verhoeven, J. D. and Noack, M., submitted to J. Vac. Sci. and Technology (1981).Google Scholar
11.Bayat-Mokhtari, P., Barlow, S. M. and Gallon, T. E., Surface Sci 83, 131 (1979).Google Scholar
12.Bevolo, A., Verhoeven, J. D. and Noack, M., submitted to Surface Science.Google Scholar
13.Hardy, S. and Fine, J., NBS (1980).Google Scholar
14.Seah, M. P., Surf. Sci 32, 703 (1972).Google Scholar
15.Seah, M. P. and Dench, W. A., Surf. Interface And. 1, 2 (1979).Google Scholar
16.Ostrach, S., Proc. Int. Conf. Physicochemical Hydrodynamics, Levich Conf., Advance Publications, St. Peter Post, Guernsey, UK (1978).Google Scholar
17.Birikh, R. V., J. Appl. Mech. Tech. Phy., No. 3, 43 (1966).Google Scholar
18.White, D. W. G., Met. Trans 2, 3067 (1971).Google Scholar
19.Gill, W. N., Iowa State University, Ames, IA (1981).Google Scholar