Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T15:38:40.207Z Has data issue: false hasContentIssue false

Suppression of Boron Diffusion by Fluorine Implantation in Preamorphized Silicon

Published online by Cambridge University Press:  17 March 2011

Giuliana Impellizzeri
Affiliation:
MATIS-INFM and Dipartimento di Fisica ed Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania, Italy
José H. R. dos Santos
Affiliation:
MATIS-INFM and Dipartimento di Fisica ed Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania, Italy
Salvatore Mirabella
Affiliation:
MATIS-INFM and Dipartimento di Fisica ed Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania, Italy
Francesco Priolo
Affiliation:
MATIS-INFM and Dipartimento di Fisica ed Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania, Italy
Enrico Napolitani
Affiliation:
INFM and Dipartimento di Fisica, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
Alberto Carnera
Affiliation:
INFM and Dipartimento di Fisica, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
Get access

Abstract

We have investigated the role of fluorine in the reduction of transient enhanced diffusion (TED) and thermal diffusion (TD) of B in preamorphized Si layers implanted with F. For this purpose, we have employed B delta-doped layers, grown by molecular beam epitaxy (MBE), as markers for silicon self-interstitials (Is). We have shown that boron TED decreases with increasing amount of incorporated F up to the complete TED suppression. Furthermore, we have clearly demonstrated that the physical mechanism that suppresses the boron TED is not a B-F chemical bonding, but a strong interaction between F atoms and Is. In addition, we have seen that fluorine strongly reduces B diffusion also under Is thermal equilibrium concentration. Our results clearly show that the presence of F lowers the Is density very effectively, reducing the boron TED as well as the dopant diffusion under equilibrium conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. The International Technology Roadmap for Semiconductors, 2001.Google Scholar
2. Jain, S. C., Schoenmaker, W., Lindsay, R., Stolk, P. A., Decoutere, S., Willander, M. and Maes, H. E., J. Appl. Phys. 91, 8919 (2002) and references therein.Google Scholar
3. Fahey, P. M., Griffin, P. B. and Plummer, J. D., Rev. Mod. Phys. 61, 289 (1989).Google Scholar
4. Napolitani, E., Coati, A., Salvador, D. De, Carnera, A., Mirabella, S., Scalese, S. and Priolo, F., Appl. Phys. Lett. 79, 4145 (2001).Google Scholar
5. Fortunato, G., Mariucci, L., Stanizzi, M., Privitera, V., Spinella, C., Coffa, S. and Napolitani, E., Mater. Sci. Semicond. Process. 4(5), 417 (2001).Google Scholar
6. Wilson, R. G., J. Appl. Phys. 54, 6879 (1983).Google Scholar
7. Downey, D. F., Chow, J. W., Ishida, E., Jones, K. S., Appl. Phys. Lett. 73, 1263 (1998).Google Scholar
8. Park, Y-J. and Kim, J-J., J. Appl. Phys. 85, 803 (1999).Google Scholar
9. Mokhberi, A., Kasnavi, R., Griffin, P. B. and Plummer, J. D., Appl. Phys. Lett. 80, 3530 (2002).Google Scholar
10. Mubarek, H. A. W. El and Ashburn, P., Appl. Phys. Lett. 83, 4134 (2003).Google Scholar
11. Impellizzeri, G., Santos, J. H. R. dos, Mirabella, S., Priolo, F., Napolitani, E. and Carnera, A., Appl. Phys. Lett. 84, 1862 (2004).Google Scholar
12. Salvador, D. De, Napolitani, E., Mirabella, S., Impellizzeri, G., Priolo, F., Terrasi, A, Bisognin, G., Berti, M., Drigo, A. V. and Carnera, A., Nucl. Instrum. Meth. B 216, 286 (2004).Google Scholar
13. Olson, G. L. and Roth, J. A., Mater. Sci. Rep. 3, 1 (1988)Google Scholar
14. Bonafos, C., Omri, M., Mauduit, B. de, BenAssayang, G., Claverie, A., Alquier, D., Martinez, A. and Mathiot, D., J. Appl. Phys. 82, 2855 (1997).Google Scholar