Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:20:50.723Z Has data issue: false hasContentIssue false

Superplastic Deformation Behavior of Zn-Al Alloys

Published online by Cambridge University Press:  10 February 2011

Tae Kwon Ha
Affiliation:
Center for Advanced Aerospace Materials (CAAM)Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, South Korea
Hyun Woo Koo
Affiliation:
Center for Advanced Aerospace Materials (CAAM)Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, South Korea
Tae Shin Eom
Affiliation:
Center for Advanced Aerospace Materials (CAAM)Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, South Korea
Young Won Chang
Affiliation:
Center for Advanced Aerospace Materials (CAAM)Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, South Korea
Get access

Abstract

The superplastic deformation behavior of a quasi-single phase Zn-0.3 wt.% Al and a microduplex Zn-22 wt.% Al eutectoid alloy has been investigated in this study within the framework of the internal variable theory of structural superplasticity (SSP). Load relaxation and tensile tests were conducted at room temperature for quasi-single phase alloy and at 200°C for eutectoid alloy. The flow curves obtained from load relaxation tests on superplastic Zn-Al alloys were shown to consist of the contributions from interface sliding (IS) and the accommodating plastic deformation due to dislocation activities. The IS behavior could be described as a viscous flow characterized by the power index value of Mg = 0.5. In the case of quasi-single phase Zn-0.3 wt.% Al alloy with the average grain size of 1 µm, a large elongation of about 1400 % was obtained at room temperature. In a relatively large-grained (10 µm) single-phase alloy, however, grain boundary sliding (GBS) was not expected from the analysis based on the internal variable theory of SSP.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Padmanabhan, K. A. and Davis, G. J., Superplasticity, Springer-Verlag, New York, 1980, p. 11.10.1007/978-3-642-81456-3Google Scholar
2. Sherby, O. D. and Wadsworth, J., Prog. Mater. Sci., 33, p. 169 (1989).10.1016/0079-6425(89)90004-2Google Scholar
3. Edington, J. W., Melton, K. N., and Cutler, C. P., Prog. Mater. Sci., 21, p. 61 (1976).10.1016/0079-6425(76)90005-0Google Scholar
4. Chokshi, A. H., Mukherjee, A. K., Langdon, T. G., Mater. Sci. Eng., R10, p. 237 (1993).10.1016/0927-796X(93)90009-RGoogle Scholar
5. Yoshizawa, Y. and Sakamura, T., J. Am. Soc. Cer., 73, p. 3,069 (1990).10.1111/j.1151-2916.1990.tb06718.xGoogle Scholar
6. Schissler, D. J., Chokshi, A. H., Nieh, T. G. and Wadsworth, J., Acta Matell., 40, p. 581 (1992).Google Scholar
7. Chokshi, A. H., Mater. Sci. Eng., A166, p. 119 (1993).10.1016/0921-5093(93)90316-7Google Scholar
8. Kawamura, Y., Shibata, T., Inoue, A. and Masumoto, T., Scripta Mater., 37, p. 431 (1997).10.1016/S1359-6462(97)00105-XGoogle Scholar
9. Naziri, H. and Pearce, R., Acta Metall., 22, p. 1321 (1974).10.1016/0001-6160(74)90032-7Google Scholar
10. Mohamed, F. A., Amed, M. M. I. and Langdon, T. G., Metall. Trans., 8A, p. 933 (1977).10.1007/BF02661575Google Scholar
11. Kaibyshev, O. A., Rodionov, B. V. and Valiev, R. Z., Acta Metall., 26, p. 1,877 (1978).10.1016/0001-6160(78)90100-1Google Scholar
12. Malek, P., Scripta Metall., 19, p. 405 (1985).10.1016/0036-9748(85)90103-6Google Scholar
13. Furukawa, M., Ma, Y., Horita, Z., Nemoto, M., Valiev, R. Z. and Langdon, T. G., Mater. Sci. Eng., A241, p. 122 (1998).10.1016/S0921-5093(97)00481-4Google Scholar
14. Arieli, A., Yu, A. K. S. and Mukherjee, A. K., Metall. Trans., 1lA, p. 181 (1980).10.1007/BF02700455Google Scholar
15. Ha, T. K. and Chang, Y. W., Acta Mater., 46, p. 2,741 (1998).10.1016/S1359-6454(97)00473-4Google Scholar
16. Hart, E. W., in Stress Relaxation Testing, edited by Fox, A. (ASTM Special Technical Pub. No. 676, Baltimore, Md, 1979) pp. 5-20.Google Scholar
17. Lee, D. and Hart, E. W., Metall. Trans., 2A, p. 1,245 (1971).10.1007/BF02664258Google Scholar
18. Woodford, D. A., Metall. Trans., 7A, p. 1,244 (1976).10.1007/BF02656614Google Scholar
19. Ha, T. K. and Chang, Y. W., Scripta Metall., 35, p. 1,317 (1996).10.1016/1359-6462(96)00297-7Google Scholar
20. Kim, J. S., Chang, Y. W. and Lee, C. S., Metall. Mater. Trans., 29A, p. 217 (1998).10.1007/s11661-998-0174-2Google Scholar
21. Ha, T. K. and Chang, Y. W., Scripta Metall., 32, p. 809 (1995).10.1016/0956-716X(95)93206-JGoogle Scholar
22. Ha, T. K., Sung, H. J., Kim, K. S. and Chang, Y. W., Mater. Sci. Eng., A271, p. 160 (1999).10.1016/S0921-5093(99)00224-5Google Scholar
23. Kwon, Y. N. and Chang, Y. W., in Light Weight Alloys for Aerospace Applications V, edited by Lee, E. W., Kim, N. J., Jata, K. V. and Frazier, W. E. (TMS-AIME Annual Meeting, San Diego, CA 1999), In-print.Google Scholar