Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-20T00:55:55.426Z Has data issue: false hasContentIssue false

Superparamagnetism and Microstructural Properties of Carbon Encapsulated Ni nanoparticle Assemblies

Published online by Cambridge University Press:  21 March 2011

Xiang-Cheng Sun
Affiliation:
Prog. Molecular Simulation, Instituto Mexicano del Petróleo, Lázaro Cárdenas 152# , 07730, D. F. México, México
Xinglong Dong
Affiliation:
Shenyang Polytechnic University, Shenyang P. R. China
J. A. Toledo
Affiliation:
Prog. Molecular Simulation, Instituto Mexicano del Petróleo, Lázaro Cárdenas 152# , 07730, D. F. México, México
M. J. Yacaman
Affiliation:
Institute of Physics, National University of Mexico, México, D. F. México
Get access

Abstract

Carbon encapsulated Ni nanoparticles (Ni(C)) were synthesized by modified arc-discharge reactor under methane atmosphere. The presence of carbon encapsulation is confirmed by HR-TEM imaging, and Nano-diffraction. The average particle radius is typically 10.5 nm with spherical shape. The intimate and contiguous carbon fringe around these Ni nanoparticles is good evidence for complete encapsulation by carbon shell layers.

Superparamagnetic property studies were performed using SQUID magnetometer for the assemblies of Ni(C) nanoparticles. The blocking temperature (TB) is determined to around 115K at 1000Oe applied field. Above TB, the magnetization M (H, T) can be described by the classical Langevin function L using the relation, M/Ms(T=0) = coth(μH/kT)- kT/μH. The particle radius can be inferred from Langevin fit (particle moment μ) and blocking temperature theory (TB), which values are a little bigger than HR-TEM observations. It is suggested, these assemblies of carbon encapsulated Ni nanoparticles have been showed typical single-domain, field-dependent superparamagnetic relaxation properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bean, C. P. and Livingston, J. D., J. Appl. Phys. 30, 120 (1959).Google Scholar
2. Dorman, J. L., Fiorani, D., and Tronc, E., Adv. Chem. Phys. 98, 283 (1997).Google Scholar
3. Leslie-Pelecky, D. L. and Rieke, R. D., Chem. Mater. 8, 1770 (1996).Google Scholar
4. Rosensweig, R. E., Ferrohydrodynamics (MIT Press, Cambridge, 1985).Google Scholar
5. McMicheael, R. D., Shull, R. D., Swartzendruder, L. J., Bennett, L. H., and Watson, R. E., J. Magn. Magn. Mater. 111, 29 (1992).Google Scholar
6. Sun, S., Murray, C. B., Weller, D., Folks, L. and Moser, A., Science 287, 1989 (2000).Google Scholar
7. Chen, Q. and John Zhang, Z., Appl. Phys. Lett. 73, 3165 (1998).Google Scholar
8. Jonsson, T., Svedlindh, P., and Hansen, M. F., Phys. Rev. Lett. 81, 3976 (1998).Google Scholar
9. Dorman, J. L., D'Orazio, F., Lucari, F., Tronc, E., Prene, P., Jolivet, J. P., Fiorani, D., Cherkaoui, R., and Nogues, M., Phys. Rev. B53, 14291 (1996).Google Scholar
10. Zhang, J., Boyd, C. and Luo, W., Phys. Rev. Lett. 77, 390 (1996).Google Scholar
11. Dravid, V. P., Host, J. J., Teng, M. H., Elliott, D., Hwang, J., Johnson, D. L., Mason, T. O. and Weertman, J. R., Nature 374, 602 (1995).Google Scholar
12. Dong, X. L., Zhang, Z. D., Xiao, Q. F., Zhao, X. G., Chuing, Y. C., Jin, S. R., Sun, W. M., Lin, Z. J., Zhang, Z. X. and Yang, H., J. Mater. Sci. 33, 1915 (1998).Google Scholar
13. Saito, Y., Yoshikawa, T., Okuda, M., Fujimoto, N., Sumiyama, K., Suzuki, K., Kasuya, A. and Nishina, Y., J. Phys. Chem. Solids 54 (12), 1849 (1993).Google Scholar
14. Hwang, J. H., Dravid, V. P., Teng, M. H., Host, J. J., Elliott, B. R., Johnson, D. L., and Mason, T. Q., J. Mater. Res. 12, 1076 (1997).Google Scholar
15. Zhang, L., Ziolo, R. F. and Ying, J. Y., Nanostruct. Mater. 9, 185 (1997).Google Scholar
16. Charles, S. W. and Popplewell, J., Ferromagnetic Materials, ed. Wohlfarth, H., (North-Holland Publishing: Amsterdam, 1982).Google Scholar
17. Bean, C. P. and Livingston, J. D., J. Appl. Phys. 30, 120S (1959).Google Scholar
18. McHenry, M. E., Majetich, S. A., Artman, J. O., DeGraef, N. and Staley, S. W., Phys. Rev B49, 11358 (1994).Google Scholar