Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T08:57:35.514Z Has data issue: false hasContentIssue false

The Superlattice Diffusion Probe: A Tool for Modeling Diffusion in III-V Semiconductors

Published online by Cambridge University Press:  26 February 2011

E. L. Allen
Affiliation:
Integrated Circuits Laboratory, Stanford University, Stanford, CA 94305
C. J. Pass
Affiliation:
Integrated Circuits Laboratory, Stanford University, Stanford, CA 94305
M. D. Deal
Affiliation:
Integrated Circuits Laboratory, Stanford University, Stanford, CA 94305
J. D. Plummer
Affiliation:
Integrated Circuits Laboratory, Stanford University, Stanford, CA 94305
V. F. K. Chia
Affiliation:
Charles Evans and Associates, 301 Chesapeake Dr., Redwood City, CA 94063
Get access

Abstract

Undoped AlAs/AlxGa1−xAs superlattice structures were grown by molecular beam epitaxy and annealed under Si3N4, SiO2 or WNX encapsulant films, both with and without the presence of implanted Sn. Enhancement of the Al-Ga interdiffusion coefficient occurred under the Si3N4 film due to in-diffusion of Si. Enhancement was even greater during diffusion of the Sn implant under both Si3N4 and SiO2. Underneath the WNX film, however, interdiffusion was suppressed even in the presence of Sn. We simulated these results with SUPREM IV and show that both the Fermi level effect and vacancy injection from the cap are necessary to cause significant enhancement of Al-Ga superlattice disordering.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tan, T. Y. and Gosele, U., Matls. Sci. and Eng. B1, 47 (1988).Google Scholar
2. Deppe, D. G. and Holonyak, N. Jr,., J. Appl. Phys. 64, R93 (1988).CrossRefGoogle Scholar
3. Laidig, W. D., Holonyak, N. Jr, Camras, M. D., Hess, K., Coleman, J. J., Dapkus, P. D. and Bardeen, J., Appl. Phys. Lett. 38, 776 (1981).Google Scholar
4. Tan, T. Y. and Gosele, U., Appl. Phys. Lett. 52, 1240 (1988).CrossRefGoogle Scholar
5. Cibert, J., Petroff, P. M., Werder, D. J., Pearton, S. J., Gossard, A. C. and English, J. H., Appl. Phys. Lett. 49, 223 (1986).Google Scholar
6. Rao, E. V. K., Ossart, P., Alexandre, F. and Thibierge, H., Appl. Phys. Lett. 50, 588 (1987).Google Scholar
7. Coleman, J. J., Dapkus, P. D., Kirkpatrick, C. G., Camras, M. D. and Holonyak, N. Jr,., Appl. Phys. Lett. 40, 904 (1982).CrossRefGoogle Scholar
8. Deppe, D. G., Piano, W. E., Dallesasse, J. M., Hall, D. C., Guido, L. J. and Holonyak, N. Jr,., Appl. Phys. Lett. 52, 825 (1988).Google Scholar
9. Rao, E. V. K., Thibierge, H., Brillouet, F., Alexandre, F. and Azoulay, R., Appl. Phys. Lett. 46, 867 (1985).Google Scholar
10. Deppe, D. G., Holonyak, N. Jr, Hsieh, K. C., Gavrilovic, P., Stutius, W. and Williams, J., Appl. Phys. Lett. 51, 581 (1987).Google Scholar
11. Mei, P., Schwarz, S. A., Venkatesan, T., Schwartz, C. L. and Colas, E., J. Appl. Phys. 65, 2165 (1989).Google Scholar
12. Guido, L. J., Major, J. S., Baker, J. E., Piano, W. E., Holonyak, N. Jr, Hsieh, K. C. and Burnham, R. D., J. Appl. Phys. 67, 6813 (1990).CrossRefGoogle Scholar
13. Law, M. E., PhD Thesis, Stanford University (1988).Google Scholar
14. Pezeshki, B., Thomas, D., and Harris, J. S. Jr,., Appl. Phys. Lett. 57, 1491 (1990).CrossRefGoogle Scholar
15. Allen, E. L., Deal, M. D. and Plummer, J. D., J. Appl. Phys. 67, 3314 (1990).Google Scholar
16. Tan, T. Y., Gosele, U. and Yu, S., Crit. Rev. in Solid State and Matls. Sciences 17, 47 (1991).Google Scholar
17. Yamagishi, H. and Yamamoto, Y., Jpn. J. Appl. Phys. 26, 122 (1987).Google Scholar
18. Greiner, M. E. and Gibbons, J. F., Appl. Phys. Lett. 44, 750 (1984).CrossRefGoogle Scholar
19. Chiang, S. Y. and Pearson, G. L., J. Appl. Phys. 46, 2986 (1975).Google Scholar
20. Allen, E. L., Ph D Thesis, Stanford University, 1992.Google Scholar