Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-06T12:55:35.796Z Has data issue: false hasContentIssue false

Superconducting Properties of High-Jc MgB2 Coatings

Published online by Cambridge University Press:  18 March 2011

D. K. Christen
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
C. Cantoni
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
J. R. Thompson
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
M. Paranthaman
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
M. F. Chisholm
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
H. R. Kerchner
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
H. M. Christen
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

We report the fabrication and superconducting properties of ∼0.5 μm thick, fine-grained polycrystalline coatings of MgB2 on single-crystal substrate surfaces. The films exhibit large critical current densities, implying little effect from the grain boundaries. Analyses for thermal activation effects are inconclusive, and evidence is presented that the irreversibility line is dominated by the combined influences of Hc2 anisotropy and polycrystallinity. Comparative studies of the magnetic persistent currents and electrical transport properties reveal excellent agreement over a wide range of temperature and magnetic field. This result is contrary to similar comparisons on high-temperature cuprates, where disparities arise from the effects of large flux creep and the diverse electric field regimes probed by the two techniques. The MgB2 films exhibit extremely sharp voltage-current relations away from the irreversibility line, in qualitative agreement with observed large Jc values and low rates of magnetic flux creep.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Paul Grant, Industrial Physicist, p.22 (Aug/Sept 2001).Google Scholar
2. Buzea, Cristina and Yamashita, Tsutomu, Supercond. Sci. Technol. 14, R115 (2001).Google Scholar
3. Verebelyi, D. T., Christen, D. K., Feenstra, R., Cantoni, C., Goyal, A., Lee, D. F., Paranthaman, M., Arendt, P. N., DePaula, R. F., Groves, J. R., and Prouteau, C., Appl. Phys. Lett. 76, 1855 (2000).Google Scholar
4. Paranthaman, M., Cantoni, C., Zhai, H. Y., Christen, H. M., Aytug, T., Sathyamurthy, S., Specht, E. D., Thompson, J. R., Lowndes, D. H., Kerchner, H. R., and Christen, D. K., Appl. Phys. Lett. 78, 3669 (2001).Google Scholar
5. Canfield, P. C. Finnemore, D. K., Bud'ko, S. L., Ostenson, J. E., Lapertot, G., Cunningham, C. E., and Petrovic, C., Phys. Rev. Lett. 86, 2423 (2001).Google Scholar
6. Thompson, J. R., Paranthaman, M., Christen, D. K., Sorge, K. D., Kim, H. J., and Ossandon, J. G., Supercond. Sci. Technol. 14, L16 (2001).Google Scholar
7. Thompson, J. R., et al., unpublished.Google Scholar
8. Kim, Hyeong-Jin, Kang, W. N., Choi, Eun-Mi, Kim, Mun-Seog, Kim, Kijoon H. P., and Lee, Sung-Ik, Phys. Rev. Lett. 87, 087002 (2001).Google Scholar
9. Xu, M., Kitazawa, H., Takano, Y., Ye, J., Nishida, K., Abe, H., Matsushita, A., Tsujii, N., and Kido, G., Appl. Phys. Lett. 79, 2779 (2001).Google Scholar
10. Jung, M.H., Jaime, M., Lacerda, A.H., Boebinger, G.S., Kang, W.N., Kim, H.J., Choi, E.M., Lee, S.I., Chem. Phys. Lett. 343, 447 (2001).Google Scholar
11. Lobb, C. J., Hui, P. M., and Stroud, D., Phys. Rev. B36, 1956 (1987).Google Scholar
12. Shante, Vinod K. S. and Kirkpatrick, Scott, Advances in Physics 20, 325 (1971).Google Scholar