Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-17T19:05:20.965Z Has data issue: false hasContentIssue false

Superconducting Multilayers: Microstructural Properties Studied by X-Ray Diffraction

Published online by Cambridge University Press:  15 February 2011

A. Vailionis
Affiliation:
Dept. of Physics, Materials Physics, Royal Institute of Technology, S-100 44 Stockholm, Sweden
A. Brazdeikis
Affiliation:
Dept. of Physics, Materials Physics, Royal Institute of Technology, S-100 44 Stockholm, Sweden
A.S. FlodstrÖm
Affiliation:
Dept. of Physics, Materials Physics, Royal Institute of Technology, S-100 44 Stockholm, Sweden
Get access

Abstract

Structural properties of molecular beam epitaxy-grown Bi2Sr2Cu1Oy'Bi2Sr2Ca1Cu2Oy multilayers have been studied by x-ray diffraction. A one-dimensional kinematic x-ray diffraction model has been used to describe the structural quality of the multilayers. Interface roughness, stacking defects and unit cell disorder are obtained by an iterative fitting of the calculated diffraction profile to the experimental spectra. The type and amount of disorder in the films was qualitatively determined. Results demonstrate that structural imperfections are present in the multilayers and have to be considered when transport properties are studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See for instance, Maritato, L., Cucolo, A.M., Vaglio, R., Noce, C., Makous, J. L. and Falco, C.M., Phys. Rev. B 38, 12917 (1988), and references therein.Google Scholar
2. Wu, J.Z., Ting, C.S., Chu, W.K. and Yao, X.X., Phys. Rev. B 44, 411 (1991).Google Scholar
3. Rasolt, M., Edis, T. and Teganovid, Z., Phys. Rev. Lett. 66, 2927 (1991).Google Scholar
4. Sakai, S., Phys. Rev. B 47, 9042 (1993).Google Scholar
5. Matsumoto, T., Kawai, T., Kitahama, K., Kawai, S., Shigaki, I. and Kawate, Y., Appl. Phys. Lett. 58, 2039 (1991).Google Scholar
6. Locquet, J-P., Catana, A., Mdchler, E., Gerber, Ch. and Bednorz, J. G., Appl. Phys. Lett. 64, 372 (1994).Google Scholar
7. Bozovic, I., Eckstein, J.N., Virshup, G.F., Chaiken, A., Wall, M., Howell, R. and Fluss, M., J. Supercond. 7, 187 (1994).Google Scholar
8. Lerch, Ph., Marcenat, F., Jacot, Ph., Ariosa, D., Perret, J., Leemann, Ch., Martinoli, P., Cantoni, M., Ott, H.R., Physica C 242, 30 (1995).Google Scholar
9. Vailionis, A., Brazdeikis, A. and Flodstrdm, A.S., Phys. Rev. B 51, 3097 (1995).Google Scholar
10. Hatano, T., Nakamura, K., Narita, H., Sato, J., Ikeda, S. and Ishii, A., J. Appl. Phys. 75, 2141 (1994).Google Scholar
11. Brazdeikis, A., Vailionis, A. and Flodström, A.S., (unpublished).Google Scholar
12. Fullerton, E. E., Schuller, I. K., Vanderstraeten, H. and Bruynseraede, Y., Phys. Rev. B 45, 9292 (1992).Google Scholar
13. Reflection high-energy electron diffraction oscillations and scanning tunneling microscopy have shown that Bi-based superconducting cuprates grow sequentially, a half unit cell by a half unit cell.Google Scholar
14. Ranno, L., Martinez-Garcia, D., Perrière, J. and Barboux, P., Phys. Rev. B 48, 13 945 (1993).Google Scholar
15. Tarascon, J. M., McKinnon, W. R., Barboux, P., Hwang, D. M., Bagley, B. G., Greene, L. H., Hull, G. W., LePage, Y., Stoffel, N. and Giroud, M., Phys. Rev. B 38, 8885 (1988).Google Scholar
16. Zhao, Y., Gu, G.D., Russell, G.J., Nakamura, N., Tajima, S., Wen, J.G., Uehara, K. and Koshizuka, N., Phys. Rev. B 51, 3134 (1995).Google Scholar