Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-20T06:23:07.807Z Has data issue: false hasContentIssue false

Superconducting composites of MgB2 with Additions obtained by Spark Plasma Sintering

Published online by Cambridge University Press:  11 July 2012

P. Badica
Affiliation:
National Institute of Materials Physics, str. Atomistilor 105 bis, Magurele, 077125, Romania
G. Aldica
Affiliation:
National Institute of Materials Physics, str. Atomistilor 105 bis, Magurele, 077125, Romania
M. Burdusel
Affiliation:
National Institute of Materials Physics, str. Atomistilor 105 bis, Magurele, 077125, Romania
Get access

Abstract

Sb2O3, Sb-metal, Bi2O3 or Bi-metal, powders were mixed with MgB2 powder. Starting compositions were ((MgB2)(M2O3)x, x = 0.0025, 0.005, 0.015, and (MgB2)(M)y, y = 0.01, M = Sb, Bi. Mixtures were processed by Spark Plasma Sintering (SPS) technique. As obtained composite samples show high density, above 94% of the theoretical density. While the secondary phases indicate on similar reactions, samples show different behavior vs. addition type and amount. This does not directly correlate with the melting temperature of the addition. From the critical current density (Jc) and irreversibility field (Hirr) enhancement viewpoints, optimum additions are oxides for x=0.025, 0.005. Both oxides are improving Jc at high fields, but Sb2O3 is effective up to 10 K, while Bi2O3 is up to 30 K. Metal additions are decreasing Jc and Hirr when compared to pristine MgB2sample.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Miu, L., Aldica, G., Badica, P., Ivan, I., Miu, D. and Jakob, J., Supercond. Sci. Technol. 23, 095002 (2010).CrossRefGoogle Scholar
Sandu, V., Aldica, G., Popa, S., Badica, P., Cimpoiasu, E., Dumitrache, F. and Sandu, E., J. Appl. Phys. 110, 123921 (2011).CrossRefGoogle Scholar
Burdusel, M., Aldica, G., Popa, S., Enculescu, M. and Badica, P., J. Mater. Sci. 47, 3828 (2012)Google Scholar
Aldica, G., Popa, S., Enculescu, M. and Badica, P., Scripta Mater. 66, 570 (2012).CrossRefGoogle Scholar
Larbalestier, D.C., Cooley, L.D., Rikel, M.O., Polyanskii, A.A., Jiang, J., Patnaik, S., Cai, X.Y., Feldmann, D.M., Gurevich, A., Squitieri, A.A., Naus, M.T., Eom, C.B., Hellstrom, E.E., Cava, R.J., Regan, K.A., Rogado, N., Hayward, M.A., He, T., Slusky, J.S., Khalifah, P., Inumaru, K. and Haas, M., Nature 410, 6825 (2001)CrossRefGoogle Scholar
Groza, J.R., Zavaliangos, A., Materials Science and Engineering A 287, 2 (2000)CrossRefGoogle Scholar
Grivel, J.C., Andersen, N.H., Pallawatta, P.G.A.P., Zhao, Y. and vin Zimmermann, M., Supercond. Sci. Technol 25, 015010 (2012)CrossRefGoogle Scholar
Zhang, X.P., Ma, Y.W., Gao, Z.S., Wang, D.L., Yu, Z.G., Awaji, S. and Watanabe, K., IEEE Trans. Appl. Supercond. 17, 2925 (2007)CrossRefGoogle Scholar
Marks, G.W., Monson, L.A., Ind. Eng. Chem. 47, 1611 (1955)CrossRefGoogle Scholar
Lutterotti, L., Nuclear Inst and Methods in Physics Research B 268, 334340 (2010)CrossRefGoogle Scholar
Aldica, G., Batalu, D., Popa, S., Nita, P., Sakka, Y., Valsylkiv, O., Miu, L., Pasuk, I. and Badica, P., Physica C, in press (doi:10.1016/j.physc.2012.01.023).Google Scholar
Williamson, G.K. and Hall, W., Acta Metallurgica 1, 22 (1953)Google Scholar
Bean, C.P., Phys. Rev. Lett. 8, 250 (1962)CrossRefGoogle Scholar
Gyorgy, E.M., van Dover, R.B., Jackson, K.A., Schneemeyer, L.F. and Waszczak, J.V., Appl. Phys. Lett. 55, 283 (1989)CrossRefGoogle Scholar
Dou, S.X., Shcherbakova, O., Yeoh, W.K., Kim, H.J., Soltanian, S., Wang, X.L., Senatore, C., Flukiger, R., Dhalle, M., Husnjak, O. and Babic, E., Phys. Rev. Lett. 98, 097002, (2007)CrossRefGoogle Scholar
Lee, S., Masui, T., Yamamoto, A., Uchiyama, H. and Tajima, S., Physica C 412414, 31, (2004)CrossRefGoogle Scholar