No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Homogeneous sub-micron sized particles of surface carbon coated phase pure LiFePO4 are synthesized by a novel non-aqueous oxalate-based sol-gel route. X-ray diffractogram of LiFePO4 reveals nanocrystals with average crystallite size 32(7) nm. The very large QS (nearly five times greater than that of Fe3+) value observed from Mossbauer spectrum is due to high spin configuration of 3d electrons and the asymmetric local environment at Fe site in LiFePO4. A uniform particle size distribution with grain size 100 - 150nm was observed in SEM with few irregular growths. Our synthetic route successfully overcomes the incidence of Fe3+, effectively controls undesirable particle growth and has the potential for upscaling and application as Li-ion battery cathodes. Progressive evolution of olivine structure by the interlock of FeO6 octahedra and PO4 tetrahedra with Li concentration is studied by introducing lithium in to LixFePO4 (0.0 × 1.0 ). A fairly abrupt phase transformation from monoclinic Fe3(PO4)2 to orthorhombic LiFePO4 shows up for x∼0.2 accompanied by structural disorder which gets stabilized at x 0.35. A systematic study of X-ray diffractograms shows nanocrystal nucleation and growth from an unstable low symmetry crystalline phase with considerable disorder.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.