Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T04:49:55.327Z Has data issue: false hasContentIssue false

Substrate Effects on Yield Point Phenomena in Epitaxial Thin Films

Published online by Cambridge University Press:  10 February 2011

D. E. Kramer
Affiliation:
Department. of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
L.-C. Chen
Affiliation:
Department. of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
C. J. Palmstrøm
Affiliation:
Department. of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
W. W. Gerberich
Affiliation:
Department. of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

The yield point phenomenon observed in nanoindentation of metallic single crystals has been attributed to dislocation nucleation. The event is preceded by elastic reversible indentation followed by a rapid increase of indenter tip displacement. A similar event has been seen in epitaxial Co films on GaAs substrates. As these films are on the order of 10 nm thick, the substrate plays a significant role in dislocation behavior as dislocations are emitted at the nucleation site. Epitaxial Fe films 23 and 100 Å in thickness have been grown on GaAs and GaAs with a Sc0.3Er0.7As interlayer. Nanoindentation experiments have been performed using the Hysitron Triboscope, an add-on device to an atomic force microscope. The influence of film thickness, epitaxial interlayer, and biaxial misfit stress on the yield point behavior in the overlayer will be considered.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gane, N. and Bowden, F. P., J. App. Phys. 39, p. 1432 (1968).Google Scholar
2. Pethica, J. B. and Tabor, D., Surface Science 89, p. 182 (1979).Google Scholar
3. Venkataraman, S. K., Kohlstedt, D. L., and Gerberich, W. W., J. Mater. Res. 8, p. 685, (1993).Google Scholar
4. Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7(6), p. 1564 (1992).Google Scholar
5. Mann, A. B. and Pethica, J. B., Appl. Phys. Lett. 69, p. 907 (1996).Google Scholar
6. Odén, M., Ljungcrantz, H., and Hultman, L, J. Mater. Res. 12(8), p. 2134 (1997).Google Scholar
7. Page, T. F., Oliver, W. C., and McHargue, C. J., J. Mater. Res. 7(2), p. 450 (1992).Google Scholar
8. Bahr, D. F., Kramer, D. E., and Gerberich, W. W., Acta Mater., accepted for publication.Google Scholar
9. Gerberich, W. W., Venkataraman, S. K., Huang, H., Harvey, S. E., and Kohlstedt, D. L., Acta Metall. Mater., 43(4), p. 1569 (1995).Google Scholar
10. Michalske, T. A. and Houston, J. E., Acta Mater. 46(2), p. 391 (1998).Google Scholar
11. Johnson, K. L., Contact Mechanics, Cambridge University Press, New York, (1984), p. 93.Google Scholar
12. Asif, S. A. Syed and Pethica, J. B., Phil Mag. 76(6), p. 1105 (1997).Google Scholar
13. Ohring, M., The Materials Science of Thin Films, Academic Press Inc., San Diego, California, (1992), p. 315.Google Scholar
14. Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth. 27, p. 118 (1974).Google Scholar
15. Doerner, M. F. and Nix, W. D., J. Mater. Res. 1(4), p. 601 (1986).Google Scholar
16. Hjort, K., Ericson, F., Schweitz, J-Å, Hallin, C., and Janédn, E., Thin Solid Films. 250, p. 157 (1994).Google Scholar
17. Castell, M. R., Shafirstein, G., and Ritchie, D. A., Phil. Mag. 74(5), p. 1185 (1996).Google Scholar
18. Thibado, P. M., Kneedler, E., Jonker, B. T., Bennett, B. R., Shanabrook, B. V., and Whitman, L. J., Phys. Rev. B. 53(16), p. R10481 (1996).Google Scholar