Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-03T02:24:59.037Z Has data issue: false hasContentIssue false

Substituent Effects on a Photo-Induced Alternation of the Lower Critical Solution Temperatures of Poly(N-isopropylacrylamide) with Azobenzene Units

Published online by Cambridge University Press:  17 March 2011

Haruhisa Akiyama
Affiliation:
Molecular Function Group, Institute for Materials & Chemical Process, National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, JAPAN
Nobuyuki Tamaoki
Affiliation:
Molecular Function Group, Institute for Materials & Chemical Process, National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, JAPAN
Get access

Abstract

We synthesized copolymers of N-isopropylacrylamide (NIPAM) and azobenzene-containing acrylates or acrylamides by free radical polymerization, and investigated the water solubility of these polymers upon irradiation with ultra-violet and visible light. The solubility depended on concentration and structure of photoreactive azobenzene unit in the polymers. The soluble polymers showed the lower critical solution temperature, which was varied along with light irradiation. Photo-induced large wettability alteration was observed in the film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Heskins, M., Gillet, J. E., Macromol. Sci. Chem., A2, 1441 (1968)Google Scholar
2. Fujishige, S., Kubota, K., Ando, I., J. Phys. Chem, 93, 9911 (1989); E. I. Tiktopulo, V. N. Uversky, V. B. Lushchik, S. I. Klenin, V. E. Bychkova, O. B. Ptitsyn, Macromolecules, 28, 7519 (1995).Google Scholar
3. Ramkissoon-Ganorkar, C., Liu, F., Baudys, M., Kim, S. W., J. Controlled Release, 59, 287 (1999); R. Yoshida, Y. Kaneko, K. Sakai, T. Okano, Y. Sakurai, Y. H. Bae, S. W. Kim, 32, 97(1994).Google Scholar
4. Yakushiji, T., Sakai, K., Kikuchi, A., Aoyagi, T., Sakurai, Y., Okano, T., Anal. Chem., 6, 1125 (1999); H. Feil, Y. H. Bae, J. Feijan, S. W. Kim, J. Membr. Sci., 64, 283 (1991).Google Scholar
5. Kungwachakun, D., Irie, M., Makromol. Chem., Rapid Commun., 9, 243246 (1988).Google Scholar
6.The isoAzam unit contents, which were estimated from NMR spectra, were 1.5, 2.5 and 4.8 mol% for polymers with 3, 7 and 15 wt% of isoAzam contents in feed, respectively.Google Scholar
7. Yu, H., Grainger, D. W., J. Appl. Polym. Sci., 49, 1553 (1993); H. Feil, Y. H. Bae, J. Feijan, S. W. Kim, Macromolecules, 25, 5528 (1992).Google Scholar
8. Ebara, M., Aoyagi, T., Sakai, K., Okano, T., J. Appl. Polym. Sci., 33, 8312 (2000).Google Scholar
9. Yasuda, T., Miyata, M., Yasuda, H., Langmuir, 8, 1425 (1992); H. J. Frank, R. F. Miguel, J Biomed. Mater. Res., 9, 315 (1975).Google Scholar