Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T07:39:24.819Z Has data issue: false hasContentIssue false

Submicron Heterostructures of Diluted Magnetic Semiconductors

Published online by Cambridge University Press:  26 February 2011

R. L. Gunshor
Affiliation:
School of Electrical Engineering, Purdue University, West Lafayette, IN 47907 Division of Engineering, Brown University, Providence, R.I. 02912
L. A. Kolodziejski
Affiliation:
School of Electrical Engineering, Purdue University, West Lafayette, IN 47907 Division of Engineering, Brown University, Providence, R.I. 02912
N. Otsuka
Affiliation:
Materials Engineering, Purdue University, West Lafayette, IN 47907 Division of Engineering, Brown University, Providence, R.I. 02912
S. Datta
Affiliation:
School of Electrical Engineering, Purdue University, West Lafayette, IN 47907 Division of Engineering, Brown University, Providence, R.I. 02912
A. V. Nurmikko
Affiliation:
Materials Engineering, Purdue University, West Lafayette, IN 47907 Division of Engineering, Brown University, Providence, R.I. 02912
Get access

Abstract

The successful thin film growth of diluted magnetic semiconductors (DMS) by molecular beam epitaxy has “nucleated” a new field of research in which the DMS material is incorporated in a variety of novel superlattice and quantum well structures. The observation of reflection high energy electron diffraction intensity oscillations in ZnSe and MnSe has enabled the fabrication of ultrathin layered structures involving the “hypothetical” zincblende magnetic semiconductor MnSe. The expected antiferromagnetic ordering of MnSe is increasingly inhibited as the MnSe layer thickness is reduced from ten monolayers to the quasi-2D limit of one monolayer. Further developments include new observations of the epitaxial growth and nucleation of ZnSe, utilizing GaAs epilayers as the substrate material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kolodziejski, L. A.,, Gunshor, R. L., Otsuka, N., Datta, S., Becker, W. M., and Nurmikko, A. V., IEEE J. Quantum Electronics, QE–22, 1660 (1986).Google Scholar
2. Yao, T., Amano, S., Makita, Y., and Naekawa, S., Jpn. J. Appl. Phys. 16 1001 (1976).CrossRefGoogle Scholar
3. Park, R. M., Salansky, N. M., Appl. Phys. Lett. 44, 249 (1984).CrossRefGoogle Scholar
4. Kolodziejski, L. A., Gunshor, R. L., Bonsett, T. C., Venkatasubramanian, R., Datta, S., Bylsma, R. B., Becker, W. M., and Otsuka, N., Appl. Phys. Lett. 47, 169 (1985).Google Scholar
5. Yao, T. and Takeda, T., Appl. Phys. Lett. 48, 160 (1986).Google Scholar
6. Kolodziejski, L. A., Gunshor, R. L., Melloch, M. R., Otsuka, N., Choi, C., Hefetz, Y., and Nurmikko, A. V., paper presented at the IV Int'l. Conf. on Molecular Beam Epitaxy, York, England, Sept. 1986.Google Scholar
7. Lewis, B. F., Lee, T. C., Grunthaner, F. J., Madhukar, A., Fernandez, R., and Maserjian, J., J. Vac. Soc. Technol. B2, 419 (1984).Google Scholar
8. Blacha, A., Presting, H., and Cardona, M., Phys. Stat. Sol. (b) 126, 11 (1984).Google Scholar
9. Bylsma, R. B., Becker, W. M., Bonsett, T. C., Kolodziejski, L. A., Gunshor, R L., Yamanishi, M., and Datta, S., Appl. Phys. Lett. 47, 1039 (1985).CrossRefGoogle Scholar
10. Andersen, D. R., Kolodziejski, L. A., Gunshor, R. L., Datta, S., Kaplan, A. E., and Nurmikko, A. V., Appl. Phys. Lett. 48, 1559 (1986).Google Scholar
11. Kolodziejski, L. A., Gunshor, R. L., Otsuka, N., Gu, B. P., Hefetz, Y., and Nurmikko, A. V., Appl. Phys. Lett. 48, 1482 (1986).CrossRefGoogle Scholar