Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T10:13:54.223Z Has data issue: false hasContentIssue false

Study on the Relations of Structure and the Ultrafast Optical Kerr Effect of Polynitriles

Published online by Cambridge University Press:  10 February 2011

Q. Wang
Affiliation:
Peking Univ., College of Chemistry and Molecular Engineering, Beijing 100871, P. R. China
Y. Y. Li
Affiliation:
Peking Univ., College of Chemistry and Molecular Engineering, Beijing 100871, P. R. China
W. W. Pei
Affiliation:
Peking Univ., College of Chemistry and Molecular Engineering, Beijing 100871, P. R. China
Y. K. He
Affiliation:
Peking Univ., College of Chemistry and Molecular Engineering, Beijing 100871, P. R. China
C. Q. Luo
Affiliation:
Peking Univ., College of Chemistry and Molecular Engineering, Beijing 100871, P. R. China
H. Y. Chen
Affiliation:
Peking Univ., College of Chemistry and Molecular Engineering, Beijing 100871, P. R. China
L. Lin
Affiliation:
Peking Univ., Dept. of Physics, Mesoscopic Physics Lab, Beijing 100871, P. R. China
C. F. Wang
Affiliation:
Peking Univ., Dept. of Physics, Mesoscopic Physics Lab, Beijing 100871, P. R. China
Y. H. Zou
Affiliation:
Peking Univ., Dept. of Physics, Mesoscopic Physics Lab, Beijing 100871, P. R. China
Get access

Abstract

A series of polybenzonitrile derivatives, prepared by plasma glow discharge processes or chemical polymerization, were characterized by FT-IR, UV-Vis, GPC and VPO etc. The secondorder nonlinear optical hyperpolarizability γ of various benzonitrile monomers and their, polymers were measured by the femtosecond time-resolved optical Kerr effect technique, and the structureproperty relationships were discussed. The power law dependence of γ on the averagepolymerization- degree of several polybenzonitrile derivatives were also reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chemla, D. S. and Zyss, I., Nonlinear Optical Properties of Organic Molecules and Crystals, Academic, New York, Vol.1 and 2, 1988.Google Scholar
2. Prasad, P. N. and Ulrich, D. R., Nonlinear Optical Effects in Organic Polymers, Plenum, New York, 1987.Google Scholar
3. Nakanishi, H., Macromolecules, 21, p. 1238 (1988).Google Scholar
4. Drury, A. and Duvey, A. P., in Nonlinear Optics, edited by Kobayashi, T., Gordon and Breach Publishers, France, 10, p. 139 (1995).Google Scholar
5. Ando, M. and Matsuda, H., Polym. J., 25(4), p. 417 (1993).Google Scholar
6. Bredas, J. L., Adant, C., Tackx, P. and Persoons, A., Chem. Rev., 94, p. 243 (1994).Google Scholar
7. Zhao, X. Y., Xu, Q., He, Y. K., Chen, H. Y., Qiang, D., Wang, C. F., Ai, X. C., Xia, Z. J. and Zou, Y. H., Chinese Chem. Lett., 7, p. 71 (1996).Google Scholar
8. Chen, H. Y., Zhao, X. Y., He, Y. K., Zou, Y. H. and Chen, M., in ISPC-13 13th International Symposium on Plasma Chemistry, Peking University Press, Beijing, Vol. III, p. 1342, 1997.Google Scholar
9. Wang, J. I. and Huang, Z. T., Acta Polymerica Sinica, 2, p. 108 (1981).Google Scholar
10. Wang, C. F., Zhao, X. Y., Chen, H. Y., Ai, X. C., Xia, Z. J. and Zou, Y. H., Appl. Phys. B, 64, p. 45 (1997).Google Scholar
11. Marder, S. R. and Perry, J. W., J. Am. Chem. Soc., 115, p. 2524 (1993).Google Scholar
12. Cheng, L. -T., Tam, W., Meredith, G. R., Rikken, G. L. J. A. and Meijier, E. W., in Nonlinear Optical Properties of Organic Materials II, (Proc. SPIE -Int. Soc. Opt. Eng., 1989, Vol 1147), p. 6172.Google Scholar