Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:50:01.039Z Has data issue: false hasContentIssue false

Study of thermoelectric properties of InGaN/GaN superlattice

Published online by Cambridge University Press:  03 August 2011

Hung-Hsun Huang
Affiliation:
Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, 10617.
Yuh-Renn Wu*
Affiliation:
Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, 10617.
*
*Corresponding Author. Electronic mail: [email protected]
Get access

Abstract

As many reports show that the superlattice structure could greatly enhance the figure of merit ZT value for the thermoelectric application. We studied the thermal and electrical properties of the InGaN/GaN superlattice structure, and further analyze the thermoelectric features with different superlattice period, doping concentration, and operation temperature. The elastic continuum model and Callaway model have been applied to calculate the phonon dispersion relation and the thermal conductivity, respectively. The electrical properties are obtained by the Boltzmann transport equation with the relaxation time approximation. Simulation results indicate that both the reduced thermal conductivity and enhanced power factor would have the contribution to the enhancement of the figure of merit ZT.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Pantha, B. N., Dahal, R., Li, J., Lin, J. Y., Jiang, H. X., and Pomrenke, G., Appl. Phys. Lett. 92, 042112 (2008).Google Scholar
[2] Bahk, J.-H., Bian, Z., Zebarjadi, M., Zide, J. M. O., Lu, H., Xu, D., Feser, J. P., Zeng, G., Majumdar, A., Gossard, A. C., et al. , Phys. Rev. B 81, 235209 (2010).Google Scholar
[3] Balandin, A. and Wang, K. L., J. Appl. Phys. 84, 6149 (1998).Google Scholar
[4] Hochbaum, A. I., Chen, R., Delgado, R. D., Liang, W., Garnett, E. C., Najarian, M., Majumdar, A., and Yang, P., NATURE 451, 163 (2008).Google Scholar
[5] Boukai, A. I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.-K., Goddard, W. A. III, and Heath, J. R., NATURE 451, 168 (2008).Google Scholar
[6] Shi, L., Yao, D., Zhang, G., and Li, B., Appl. Phys. Lett. 96, 173108 (2010).Google Scholar
[7] Liang, G., Huang, W., Koong, C. S., Wang, J.-S., and Lan, J., J. Appl. Phys. 107, 014317 (2010).Google Scholar
[8] Zou, J.. J.Appl Phys. 108, 034324 (2010).Google Scholar
[9] Zide, J. M. O., Vashaee, D., Bian, Z. X., Zeng, G., Bowers, J. E., Shakouri, A., and Gossard, A. C., Phys. Rev. B 74, 205335 (2006).Google Scholar
[10] Zeng, G., Zide, J. M. O., Kim, W., Bowers, J. E., Gossard, A. C., Bian, Z., Zhang, Y., Shakouri, A., Singer, S. L., and Majumdar, A., J. Appl. Phys. 101, 034502 (2007).Google Scholar
[11] Izaki, R., Kaiwa, N., Hoshino, M., Yaginuma, T., Yamaguchi, S., and Yamamoto, A., Appl. Phys. Lett. 87, 243508 (2005).Google Scholar
[12] Tong, H., Zhao, H., Handara, V. A., Herbsommer, J. A., and Tansu, N. (SPIE, 2009), vol. 7211, p. 721103.Google Scholar
[13] Pantha, B., Dahal, R., Li, J., Lin, J., Jiang, H., and Pomrenke, G., J. Electron. Mater. 38, 1132 (2009).Google Scholar
[14] Bian, Z., Zebarjadi, M., Singh, R., Ezzahri, Y., Shakouri, A., Zeng, G., Bahk, J.-H., Bowers, J. E., Zide, J. M. O., and Gossard, A. C., Phys. Rev. B 76, 205311 (2007).Google Scholar
[15] Tamura, S., Hurley, D. C., and Wolfe, J. P., Phys. Rev. B 38, 1427 (1988).Google Scholar
[16] Balandin, A. A., Pokatilov, E. P., and Nika, D. L., J. Nanoelectron. Optoelectron. 2 (2007).Google Scholar
[17] Zou, J. and Balandin, A., J. Appl. Phys. 89, 2932 (2001).Google Scholar
[18] Guthy, C., Nam, C.-Y., and Fischer, J. E., J. Appl. Phys. 103, 064319 (2008).Google Scholar
[19] Callaway, J., Phys. Rev. 113, 1046 (1959).Google Scholar
[20] Vurgaftman, I. and Meyer, J. R., J. Appl. Phys. 94, 3675 (2003).Google Scholar
[21] Foutz, B. E., O’Leary, S. K., Shur, M. S., and Eastman, L. F., J. Appl. Phys. 85, 7727 (1999).Google Scholar
[22] Krukowski, S., Witek, A., Adamczyk, J., Jun, J., Bockowski, M., Grzegory, I., Lucznik, B., Nowak, G., Wroblewski, M., Presz, A., et al. , J. Phys. Chem. Solids 59, 289 (1998).Google Scholar
[23] Kim, K., Lambrecht, W. R. L., and Segall, B., Phys. Rev. B 53, 16310 (1996).Google Scholar
[24] Liu, W. and Balandin, A. A., J. Appl. Phys. 97, 123705 (2005).Google Scholar