Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T02:12:59.989Z Has data issue: false hasContentIssue false

Study of the Structure and Chemistry of Point, Line and Planar Imperfections Via Field-Ion and Atom-Probe Field-Ion Microscopy

Published online by Cambridge University Press:  21 February 2011

David N. Seidman*
Affiliation:
Northwestern University, Department of Materials Science and Engineering and the Materials Research Center, The Technological Institute, Evanston, Illinois 60208–3108, U.S.A.
Get access

Abstract

We first list, in catalogue form, a number of research subjects which have utilized the fieldion microscope (FIM) and atom-probe field-ion microscope (APFIM) techniques in their solution. Then we present the results of a combined transmission electron microscopy (TEM) and APFIM study of a grain boundary (GB) in a Mo-5.4 at.% Re alloy, which had been annealed in bulk form for 35 hours at 1273 K to induce Re segregation. A GB with an orientation within ≈0.4° of Σ = 9 was studied employing TEM and analyzed in detail using Bollmann's 0-Lattice theory and Frank's formula. A set of secondary GB dislocations was observed with a spacing of 11.4 nm. The APFIM measurements – on this same GB – indicate that it has a Re concentration of ≈9.8 at.%; this value is 1.75 times greater than the matrix's measured concentration of 5.6±0.9 at.% Re. Thus this research constitutes direct and quantitative experimental evidence for solute-atom segregation to a high-angle grain boundary with a relatively high degree of coincidence ( ≈Σ = 9 ). These results are consistent with our Monte Carlo simulations of high coincidence twist boundaries and a Σ = 5 tilt boundary in Pt-1.0 at.% Au alloys which show that solute-atom segregation occurs mainly to the dislocation cores. The experimental and simulated values of the enhancement factor are approximately the same.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Müller, E. W., Z. Physik 131, 136 (1951); E W. Müller, J. A. Panitz and S. B. McLane, Rev. Sci. Instrum. 39, 83 (1968); E. W. Müller and T.T. Tsong, Prog. Surf. Sci. 4, 1 (1973).CrossRefGoogle Scholar
2. Brenner, S. S., Surface Sci. 70, 427 (1978); S.S. Brenner and M. K. Miller, J. Metals 35, 54 (1983).CrossRefGoogle Scholar
3. Wagner, R., Field-Ion Microscopy (Springer-Verlag, 1982), Chapt. 4; P. Haasen, Metall. Trans. 16A, 1173 (1985).Google Scholar
4. Ehrlich, G., in Chemistry and Physics of Solid Surfaces 5, edited by Vanselow, R. and Howe, R. (Springer-Verlag, Berlin, 1984), p. 282.Google Scholar
5. Tsong, T. T., Prog. Surface Sci. 10, 165 (1980).Google Scholar
6. Seidman, D.N., J. Phys. F. 3, 393 (1973); Surf. Sci. 70. 532 (1978).Google Scholar
7. Yamamoto, M., Nenno, S. and Shono, F., Japan J. Appl. Phys. 16, 2045 (1977).Google Scholar
8. Turner, P. J. and Papazian, J. M., Met. Sci. 7, 81 (1973).CrossRefGoogle Scholar
9. Alvensleben, L. v. and Haasen, P., proceedings of session Q on Characterization...(1989).Google Scholar
10. Karlsson, L. and Nordén, H., Acta Metall. 36, 13 (1988).CrossRefGoogle Scholar
11. Seidman, D.N., Wilson, K.L. and Nielsen, C.H., in Proc. of the Int, Conf. on Fundamental Aspects of Rad. Dam. in Metals, edited by Robinson, M.T. and Young, F.W. Jr., (National Tech. Inform. Serv., U.S. Dept. of Commerce, Springfield, VA, 1975), pp. 373–96.Google Scholar
12. Scanlan, R. M., Seidman, D. N. and Styris, D. L., Phil. Mag. 23, 1439&1459 (1971).Google Scholar
13. Petroff, P. and Seidman, D.N., Appl. Phys. Lett. 18, 518 (1971).Google Scholar
14. Seidman, D.N. and Lie, K. H., Acta Metall. 20, 1045 (1972).Google Scholar
15. Petroff, P. and Seidman, D.N., Acta Metall. 21,323 (1973).Google Scholar
16. Robertson, J.T., Wilson, K.L. and Seidman, D. N., Phil. Mag. 27 1417 (1973).Google Scholar
17. Seidman, D. N., Wilson, K. L. and Nielsen, C. H., Phys. Rev. Lett. 35, 1041 (1975).Google Scholar
18. Wilson, K. L. and Seidman, D. N., Radiat. Effects 33, 149 (1977).Google Scholar
19. Seidman, D.N., Scripta Metall. 13, 251 (1979).Google Scholar
20. Wilson, K L., Baskes, M.I. and Seidman, D.N., Acta Metall. 28, 89 (1980).Google Scholar
21. Wei, C.-Y. and Seidman, D.N., Radiat. Effects 32. 229 (1977).CrossRefGoogle Scholar
22. Wei, C.-Y. and Seidman, D.N., J. Nuc. Mat. 69 & 70, 693 (1978).Google Scholar
23. Wilson, K. L. and Seidman, D.N., Radiat. Effects 27, 67 (1975).CrossRefGoogle Scholar
24. Nielsen, C.H., M.S. Thesis, Cornell University (1977).Google Scholar
25. Aidelberg, J., Ph.D. Thesis, Cornell University (1980).Google Scholar
26. Berger, A. S., Seidman, D. N. and Balluffi, R. W., Acta Metall. 21, 123 & 135 (1973).Google Scholar
27. Park, J.-Y., Huang, H.-C. W., Berger, A. S. and Balluffi, R. W., in Defects and Defect Clusters in BCC Metals and their Alloys, edited by Arsenault, R. J. (Univ. of Maryland, College Park, MD, 1973), Nuclear Metallurgy, vol.18, pp. 420439.Google Scholar
28. Park, J. Y., Ph.D. Thesis, Cornell University (1975).Google Scholar
29. Huang, H.-C. W., Ph.D. Thesis, Cornell University (1975).Google Scholar
30. Wagner, A. and Seidman, D. N., Phys. Rev. Lett. 42, 515 (1979).Google Scholar
31. Amano, J., Wagner, A. and Seidman, D. N., Phil. Mag.A 44, 177 & 199 (1981).Google Scholar
32. Amano, J. and Seidman, D. N., J. Appl. Phys. 56, 983 (1984).Google Scholar
33. Macrander, A. T. and Seidman, D. N., J. Appl. Phys. 56, 1623 (1984).Google Scholar
34. Beaven, L. A., Scanlan, R.M. and Seidman, D.N., Acta Metall. 19, 1339 (1971).Google Scholar
35. Wilson, K. L. and Seidman, D. N., in Defects and Defect Clusters in BCC Metals and their Alloys, edited by Arsenault, R. J. (University of Maryland, College Park, MD, 1973), Nuclear Metallurgy, Vol 18, pp. 216239.Google Scholar
36. Wei, C.-Y. and Seidman, D. N., Phil. Mag.A 37, 257 (1978).Google Scholar
37. Wei, C.-Y. and Seidman, D. N., Appl. Phys. Lett. 34, 622 (1979).Google Scholar
38. Wei, C.-Y. and Seidman, D. N., Phil. Mag.A 43, 1419 (1981).Google Scholar
39. Wei, C.-Y., Current, M. I. and Seidman, D. N., Phil Mag.A 44, 459 (1981).CrossRefGoogle Scholar
40. Seidman, D. N., Current, M. I., Pramanik, D. and Wei, C.-Y., J. Nucl.Intrum. & Meth. 108 & 109, 67 (1982).Google Scholar
41. Current, M. I., Wei, C.-Y. and Seidman, D. N., Phil. Mag.A 47,407 (1983).CrossRefGoogle Scholar
42. Pramanik, D. and Seidman, D. N., Nucl. Instrum. Meth. 209, 453 (1983).CrossRefGoogle Scholar
43. Pramanik, D. and Seidman, D. N., Appl. Phys. Lett. 43, 639 (1983).CrossRefGoogle Scholar
44. Pramanik, D. and Seidman, D.N., J. Appl. Phys. 54, 6352 (1983).CrossRefGoogle Scholar
45. Praminik, D. and Seidman, D. N., J. Appl. Phys. 60, 137 (1986).CrossRefGoogle Scholar
46. Aidelberg, J. and Seidman, D. N., Nucl. Instrum. Meth. 170, 413 (1980).Google Scholar
47. Aidelberg, J. and Seidman, D. N., Mater. Sci. Forum 15 – 18, 273 (1987).Google Scholar
48. Current, M. I. and Seidman, D. N., Nucl. Instrum & Meth. 170, 377 (1980).Google Scholar
49. Current, M. I., Wei, C-Y. and Seidman, D. N., Phil Mag.A 43, 103 (1981).Google Scholar
50. Brenner, S. S. and Seidman, D. N., Radiat. Effects 24,73 (1975).Google Scholar
51. Brenner, S. S., Wagner, R. and Spitznagel, J., Metall. Trans. 9A, 1761 (1978).Google Scholar
52. Wagner, A. and Seidman, D. N., J. Nucl. Mater. 83, 48 (1979).Google Scholar
53. Herschitz, R. and Seidman, D. N., Acta Metall. 32, 1141 & 1151 (1984).Google Scholar
54. Herschitz, R. and Seidman, D. N., Scripta Metall. 16, 849 (1982).Google Scholar
55. Herschitz, R. and Seidman, D. N., Surf. Sci. 130, 63 (1983).Google Scholar
56. Herschitz, R. and Seidman, D. N., Acta Metall. 33, 1547 & 1565 (1985).Google Scholar
57. Herschitz, R., Seidman, D.N. and Brokman, A., J. Phys.(Paris) 46, C4451 (1985).CrossRefGoogle Scholar
58. Moore, A. J. W., in Field-Ion Microscopy, edited by Hren, J. J. and Ranganathan, S. (Plenum Press, New York, 1968), pp. 7686.Google Scholar
59. Hu, J. G., Krakauer, B. W., M.Kuo, S., Mallick, R., Seki, A., Seidman, D. N. and Baker, J., submitted to Rev. Sci. Instrum. (1989).Google Scholar
60. Fasth, J. E., Loberg, B. and Nordén, H., J. Sci. Instrum. 44, 1044 (1967).Google Scholar
61. Loberg, B. and Nordén, H., Arkiv. Fysik 39, 383 (1969).Google Scholar
62. Bollmann, W., Crystal Lattices. Interfaces. Matrices ( Bollmann, Geneva, Switzerland, 1982).Google Scholar
63. Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W. and Whelan, M. J., Electron Microscopy of Thin Crystals (Butterworths, Washington, DC, 1965), pp. 169170.Google Scholar
64. Balluffi, R. W., Woolhouse, G. R. and Komem, Y. in Nature and Behavior of Grain Boundaries, edited by Hsun, Hu (Plenum, New York, 1972), pp. 4169.Google Scholar
65. Gratias, D. and Portier, R., J. Phys (Paris) 43, C615 (1982).Google Scholar
66. Grimmer, H., Bollmann, W. and Warrington, D.H., Acta Cryst. A30, (1974).Google Scholar
67. Warrington, D. H. and Grimmer, H., Phil Mag. 30, 461 (1974).Google Scholar
68. Amelinckx, S. and Dekeyser, W., Solid St. Phys. 8, 325 (1959).Google Scholar
69. Foiles, S. M., Mat. Res. Soc. Symp. Proc. 63, 61(1985).Google Scholar
70. Seki, A., Seidman, D. N., Hwang, M., Freeman, A. J. and Foiles, S. M., submitted to Scripta Metall. (1989).Google Scholar
71. Oh, Y., Seki, A., Seidman, D.N., Freeman, A.J. and Foiles, S.M., research in progress (1989).Google Scholar
72. Hondros, E. D. and Seah, M. P., in Physical Metallurgy edited by Cahn, R. W. and Haasen, P. (North-Holland, Amsterdam, 1983 ), pp. 855931.Google Scholar