No CrossRef data available.
Published online by Cambridge University Press: 17 March 2011
In order to gain insight into the influences of formation of an icosahedral phase in Zr-based metallic glasses on the physical properties, thermal and electrical properties of Zr70Ni10Pd20 metallic glass were investigated. From DSC analyses, activation energies for the phase transition from an amorphous to an icosahedral phase and from the icosahedral to a crystalline (Zr2Ni) phase were estimated to be 3.42 and 3.07 eV, respectively. The effect of the phase transformations on the electrical resistivity was successfully observed; the resistivity clearly exhibits an increase and a decrease corresponding to the transitions from the amorphous to the icosahedral phase and from the icosahedral to the crystalline Zr2Ni phase, respectively. It is concluded that the increase of the resistivity upon the precipitation of the icosahedral phase is due to an increase of the volume fraction of the icosahedral grains, which possess higher resistivity.