Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-10-04T08:30:09.490Z Has data issue: false hasContentIssue false

A Study of the Dependence of the Structure of Σ = 3 Tilt Boundaries in Gold on the Inclination of the Boundary Plane

Published online by Cambridge University Press:  26 February 2011

Gui Jin Wang
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, U.S.A.
V. Vitek
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, U.S.A.
Get access

Abstract

The atomic structure of Σ = 3 tilt boundaries with variously inclined boundary planes has been studied using the many body potentials for gold. A chain unit model, analogous to the structural unit model, describes the relationship between different boundaries. The basic units in this model are units of the (111) and (112) twin boundaries and the model corresponds to atomic level faceting into these boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bishop, G. H. and Chalmers, B., Scripta Metall. 2, 133 (1968).Google Scholar
2. Sutton, A. P. and Vitek, V., Phil. Trans. Roy. Soc. London A 309, 55 (1983).Google Scholar
3. Sutton, A. P. and Vitek, V., Phil. Trans. Roy. Soc. London A 309, 1 (1983).Google Scholar
4. Sutton, A. P. and Vitek, V., Phil. Trans. Roy. Soc. London A 309, 37 (1983).Google Scholar
5. Wang, G.-J., Sutton, A. P. and Vitek, V., Acta Metall. 32, 1093 (1984).Google Scholar
6. Wang, G.-J. and Vitek, V., Acta Metall. 34, 951 (1986).Google Scholar
7. Schwartz, D., Vitek, V. and Sutton, A. P., Philos. Mag. A 51, 499 (1985).Google Scholar
8. Sutton, A. P., Interfacial Structure, Properties and Design, edited by Yoo, M. H., Clark, W. A. T. and Briant, C. L. (Pittsburgh, Materials Research Society), Vol. 122, p. 81 (1989).Google Scholar
9. Sutton, A. P. and Balluffi, R. W., Philos. Mag. Lett. 61, 91 (1990).CrossRefGoogle Scholar
10. Wolf, U., Gumbsch, P., Ichinose, H. and Fischmeister, H. H., J. Phys. France 51, C1359 (1990).Google Scholar
11. Wolf, U., Ernst, F., Muschik, T., Finnis, M. W. and Fischmeister, H. F., Philos. Mag. A, to be published (1992).Google Scholar
12. Baskes, M. I., Foiles, S. M. and Daw, M. S., Grain Boundary Chemistry and Intergranular Fracture, edited by Was, G. S. and Bruemmer, S. M., Materials Sci. Forum Vol. 46, p. 187 (1989).Google Scholar
13. Daw, M. S. and Baskes, M. I., Phys. Rev. B 29, 6443 (1984).CrossRefGoogle Scholar
14. Ackland, G. J., Tichy, G., Vitek, V. and Finnis, M. W., Philos. Mag. A 56, 735 (1987).CrossRefGoogle Scholar
15. Vitek, V., J. Phys. France 49, C5 (1988).Google Scholar
16. Finnis, M. W. and Sinclair, J. E., Philos. Mag. A 50, 45 (1984).CrossRefGoogle Scholar
17. Ackland, G. J. and Vitek, V., Phys. Rev. B 41, 10324 (1990).CrossRefGoogle Scholar
18. Bristowe, P. D. and Crocker, A. G., Acta Metall. 25, 201 (1977).Google Scholar
19. Ichinose, H., Ishida, Y., Baba, N. and Kanaya, K., Philos. Mag. A 52, 51 (1985).Google Scholar
20. Brokman, A., Bristowe, P. D. and Balluffi, R. W., Scripta Metall. 15, 201 (1981).Google Scholar
21. Merkle, K. L. and Wolf, D., Philos. Mag. A 65, 513 (1992).Google Scholar