Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T10:46:36.174Z Has data issue: false hasContentIssue false

Study of Structural Defects in CdZnTe Crystals by High Resolution Electron Microscopy

Published online by Cambridge University Press:  29 July 2011

A. Hossain
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973, USA
A. E. Bolotnikov
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973, USA
G. S. Camarda
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973, USA
Y. Cui
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973, USA
R. Gul
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973, USA
K-H. Kim
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973, USA
K. Kisslinger
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973, USA
D. Su
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973, USA
G. Yang
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973, USA
L. H. Zhang
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973, USA
R. B. James
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973, USA
Get access

Abstract

We investigated defects in CdZnTe crystals produced from various conditions and their impact on fabricated devices. In this study, we employed transmission and scanning transmission electron microscope (TEM and STEM), because defects at the nano-scale are not observed readily under an optical or infrared microscope, or by most other techniques. Our approach revealed several types of defects in the crystals, such as low-angle boundaries, dislocations and precipitates, which likely are major causes in degrading the electrical properties of CdZnTe devices, and eventually limiting their performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Szeles, C. and Eissler, E. E., Semiconductors for Room Temperature Radiation Detector Applications II, Vol. 487, edited by James, R. B., Schlesinger, T. E., Siffert, P., Dusi, W., Squillante, M. R., O’Connell, M. and Cuzin, M. (Materials Research Society, Pittsburgh, PA, 3 (1998).Google Scholar
2. Heffelfinger, J. R., Medlin, D. L., and James, R. B., Semiconductors for Room Temperature Radiation Detector Applications II, Vol. 487, edited by James, R. B., Schlesinger, T. E., Siffert, P., Dusi, W., Squillante, M. R., O’Connell, M. and Cuzin, M. (Materials Research Society, Pittsburgh, PA, 33(1998).Google Scholar
3. Schlesinger, T. E., Toney, J. E., Yoon, H., Lee, E. Y., Brunett, B. A., Franks, L., and James, R. B., Mat. Sci. Eng. R32, 103 (2001).Google Scholar
4. Rudolph, P., Cryst. Res. Technol. 38, no. 7– 8, 542 (2003).Google Scholar
5. Carini, G. A., Bolotnikov, A. E., Camarda, G. S., Wright, G. W., Li, L., and James, R. B., Appl. Phys. Lett. 88, 143515 (2006).Google Scholar
6. Bolotnikov, A. E., Camarda, G. S., Carini, G. A., Cui, Y., Li, L., and James, R. B., Nucl. Instr. Meth. A571, 687 (2007).Google Scholar
7. Bolotnikov, A. E., Camarda, G. S., Carini, G. A., Cui, Y., Kohman, K. T., Li, L., Salomon, M. B., and James, R. B., IEEE Trans. Nucl. Sci., NS-54, no. 4, 821(2007).Google Scholar
8. Li, G, Shih, S-J., Huang, Y, Wang, T., and Jie, W., Journal of Crystal Growth 311, 85 (2008).Google Scholar
9. Loginov, Y.Y., Brown, P. D., Durose, K., Structural defect formation in II-VI semiconductors, Logos, M., ISBN 5-94010-214-X, (2003).Google Scholar