Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T09:22:57.834Z Has data issue: false hasContentIssue false

A Study of Structural Damage & Recovery of Si, Ge and Ga FIB implants in Silicon

Published online by Cambridge University Press:  09 September 2014

Prabhu Balasubramanian*
Affiliation:
Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA.
Jeremy F. Graham
Affiliation:
FEI, Hillsboro, OR, 97124, USA
Robert Hull
Affiliation:
Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA.
*
Get access

Abstract

The focused ion beam (FIB) has the necessary precision, spatial resolution and control over ion delivery for potential nano-scale doping of nanostructures such as semiconductor quantum dots (QDs). The ion current density in a FIB is 0.1-10 A/cm2, which is at least three orders of magnitude higher than that in a commercial broad beam ion implanter. Therefore an understanding of FIB implantation damage and recovery is of substantial interest. In this work we employ Raman probes of wavelengths 514 nm and 405 nm for quantifying ion implantation damage—both before and after annealing—in 30 kV Si2+, Ge2+ and Ga+ implants (fluences: 1x1012-5x1015 ions/cm2) into Si(100), for the purpose of understanding the effect of ion species on damage recovery.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kammler, M., Hull, R., Reuter, M. C., and Ross, F. M., Applied Physics Letters 82(7), 1093 (2003); J. L. Gray, R. Hull, and J. A. Floro, Journal of Applied Physics 100 (8), 7 (2006).CrossRefGoogle Scholar
Matsukawa, T., Shinada, T., Fukai, T., and Ohdomari, I., Journal of Vacuum Science & Technology B 16(4), 2479 (1998); R. Hull, J. Floro, J. Graham, J. Gray, M. Gherasimova, A. Portavoce, and F. M. Ross, Materials Science in Semiconductor Processing 11 (5-6), 160 (2008).CrossRefGoogle Scholar
Tamura, M., Shukuri, S., Moniwa, M., and Default, M., Applied Physics a-Materials Science & Processing 39(3), 183 (1986); M. Tamura, S. Shukuri, T. Ishitani, M. Ichikawa, and T. Doi, Japanese Journal of Applied Physics Part 2-Letters 23 (6), L417 (1984).CrossRefGoogle Scholar
Graham, J. F., Kell, C. D., Floro, J. A., and Hull, R., Nanotechnology 22(7), 5 (2011).CrossRefGoogle Scholar
Jellison, G. E., Modine, F. A., White, C. W., Wood, R. F., and Young, R. T., Physical Review Letters 46(21), 1414 (1981).CrossRefGoogle Scholar
Wilbertz, C., Bhatia, K. L., Kratschmer, W., and Kalbitzer, S., Materials Science and Engineering B-Solid State Materials for Advanced Technology 2(4), 325 (1989).CrossRefGoogle Scholar
Haridoss, S., Beniere, F., Gauneau, M., and Rupert, A., Journal of Applied Physics 51(11), 5833 (1980).CrossRefGoogle Scholar
Crowder, B. L., Journal of the Electrochemical Society 118(6), 943 (1971).CrossRefGoogle Scholar