Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:33:18.105Z Has data issue: false hasContentIssue false

Study of Spatial and Energetical Behavior of Slow Si-SiO2 Interface States By Tunnel-Dlts Under Fowler-Nordheim Stress

Published online by Cambridge University Press:  22 February 2011

D. Vuillaume
Affiliation:
Laboratoire de Physique des Solides, CNRS UA 253, ISEN 41 bd Vauban, 59046 Lille Cedex, France
H. Lakhdari
Affiliation:
Laboratoire de Physique des Solides, CNRS UA 253, ISEN 41 bd Vauban, 59046 Lille Cedex, France
J. C. Bourgoin
Affiliation:
Groupe de Physique des Solides, ENS, Université Paris 7, 2 place Jussieu, 75251 Paris Cedex 05, France
R. Bouchakour
Affiliation:
Laboratoire d'Electronique et de Rayons X, Faculté des Sciences de Reims, BP 347, 51046 Reims Cedex, France
M. Jourdain
Affiliation:
Laboratoire d'Electronique et de Rayons X, Faculté des Sciences de Reims, BP 347, 51046 Reims Cedex, France
Get access

Abstract

We study the behavior of the spatial and energetical distribution of the slow Si-SiO2 interface states ( i.e. the defects located in the strained SiO2 layer near the interface) when the Metal-oxide-semiconductor (MOS) structure is submitted to a high field electrons injection from the Si substrate. We have analysed the creation kinetics of these slow states in order to compare with the behavior of the fast interface states which are better studied. We demonstrate that the fast interface states are more rapidly generated than the slow states and that the creation kinetics of fast states reach a saturation at lower injected charge. We also find that the fast interface states generation is independent from the energetical location of the states in the Si bandgap. For the generation of slow states, we observe a weak dependence on the energetical location of the defects in the SiO2 bandgap, and a strong dependence on the depth location from the Si-SiO2 interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. A general review is beyond the scope of this paper.Google Scholar
2. Weinberg, Z. A, and Nguyen, T.N., J. Appl. Phys. 61, 1947 (1987)Google Scholar
3. Young, D. R, Irene, E.A., DiMaria, D.J., DeKeersmaecker, R.F., and Massoud, H.Z., J. Appl. Phys. 50, 6366 (1979)CrossRefGoogle Scholar
4. DiMaria, D.J., Weinberg, Z. A, and Aitken, J.M., J. Appl. Phys. 48, 898 (1977)Google Scholar
5. Vuillaume, D., and Bourgoin, J.C. in Thin films-Interfaces and Phenomena, edited by Nemenich, R.J., Ho, P.S., and Lau, S.S. (Mater. Res. Soc. Proc. 54, Pittsburgh, PA 1986) pp. 587592 Google Scholar
6. Vuillaume, D., Bourgoin, J.C., and Lannoo, M., Phys. Rev. B 34, 1171 (1986)Google Scholar
7. Nicollian, E.H., and Brews, J.R., MOS Physics and Technology, (Wiley, New York, 1982), p. 512 Google Scholar
8. Vuillaume, D., Lakhdari, H., and J.C. Bourgoin (to be published)Google Scholar
9. Heiman, F.P, and Warfield, O., IEEE Trans. Electron Devices ED. 12, 167 (1965)CrossRefGoogle Scholar
10. Heyns, M.M, DeKeersmaecker, R.F., and Hillen, M.W., Appl. Phys. Lett. 44, 202 (1984)Google Scholar
11. Horiguchi, S., Kobayashi, T., and Saito, T., J. Appl. Phys. 58, 387 (1985)Google Scholar
12. Chang, S.T., and Lyon, S.A., Appl. Phys. Lett. 48, 136 (1986)Google Scholar