Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-20T09:28:10.350Z Has data issue: false hasContentIssue false

The Study of Space Charge Effects by Spectral Response, Steady State Charge Collection and Transient Photocurrents in Thick a-Si:H Pin-Diodes

Published online by Cambridge University Press:  10 February 2011

J.-H. Zollondz
Affiliation:
FB Physik, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, F.R. Germany
R. Brüggemann
Affiliation:
FB Physik, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, F.R. Germany
S. Reynolds
Affiliation:
FB Physik, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, F.R. Germany
C. Main
Affiliation:
FB Physik, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, F.R. Germany
W. Gao
Affiliation:
FB Physik, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, F.R. Germany
G. H. Bauer
Affiliation:
FB Physik, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, F.R. Germany
Get access

Abstract

Charge collection, transient photocurrents and collection efficiency under additional bias illumination were used to characterize 3–4 micron thick a-Si:H pin-diodes. The wavelength dependent decrease or increase in the spectral response, depending on the bias flux and absorption depth, is related to the distribution of the electric field, recombination and majority carrier diffusion. At higher photon flux an overshoot in the transient photocurrent after switch-on of steady illumination indicates the time scale for the changes in internal variables. Collection efficiencies under large bias monochromatic photon flux well in excess of the maximum value of 100 % for probe beam generated carriers are observed with a large amplification ratio. These efficiencies sensitively depend both on the applied voltage and the defect density. Numerical modelling reveals the influence of internal variables on the transient and steady state photocurrents under the different illumination conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Crandall, R.S. J. Appl. Phys. 54, 7176 (1983); 55, 4418 (1984).Google Scholar
2. Abel, C.-D., Paes, H. R., Bauer, G.H., in Amorphous Silicon Technology-1991, ed. Thompson, M.J. et al. (Mat. Res. Soc. Proc. 219, Pittsburgh, 1991) p. 851.Google Scholar
3. Ulrichs, C., Eickhoff, T., Wagner, H., J. Non-Cryst. Sol. 164–166, 705 (1993).Google Scholar
4. Wieczorek, H., Fuhs, W., phys. stat. sol. (a) 114, 413 (1989).Google Scholar
5. Brüggemann, R., Main, C., Bauer, G.H., J. Non-Cryst. Sol. 164–166, 663 (1993).Google Scholar
6. Maruska, H.P., Hicks, M. C., Moustakas, T. D., Friedman, R., IEEE Trans. El. Dev. ED 31, 1343 (1984).Google Scholar
7. Hou, J. Y., Fonash, S. J., Appl. Phys. Lett. 61, 186 (1992).Google Scholar
8. Rubinelli, F. A., Hou, J. Y., Fonash, S. J., J. Appl. Phys. 73, 2548 (1993).Google Scholar
9. Rubinelli, F. A., J. Appl. Phys. 73, 2548 (1993).Google Scholar
10. Fonash, S. J. et al. , Optical Engineering 33, 2065 (1994).Google Scholar
11. Chatterjee, P., J. Appl. Phys. 75, 1093 (1994).Google Scholar
12. Fortmann, C. M., Fischer, D., in Conf. Record 23rd IEEE PVSC (IEEE, New York, 1993), p. 971.Google Scholar
13. Gao, W., Brüggemann, R., unpublished (1994).Google Scholar
14. Gao, W., Main, C., Brüggemann, R., Zollondz, J.-H., Gibson, R.A.G., J. Non-Cryst. Sol., (1996) in print.Google Scholar
15. Gao, W., PhD thesis University of Abertay Dundee (1995).Google Scholar
16. Brüggemann, R., Main, C., Bauer, G.H., in Amorphous Silicon Technology-1992, ed. by Thompson, M.J. et al. (Mat. Res. Soc. Proc. 258, Pittsburgh, 1992) p. 729.Google Scholar
17. Main, C., Berkin, J., Briiggemann, R., Marshall, J.M., J. Non-Cryst. Sol. 137 & 138,439 (1991).Google Scholar