Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:37:46.172Z Has data issue: false hasContentIssue false

A Study of Phase Transition Behaviors of Chalcogenide Layers Using In-situ AC Impedance Spectroscopy

Published online by Cambridge University Press:  11 July 2011

Yin-Hsien Huang
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu, Taiwan 30010, R.O.C.
Yu-Jen Huang
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu, Taiwan 30010, R.O.C.
Tsung-Eong Hsieh
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, 1001 Ta-Hseuh Road, Hsinchu, Taiwan 30010, R.O.C.
Get access

Abstract

The electrical properties of chalcogenide thin films, both pristine Ge2Sb2Te5 (GST) and cerium-doped GST (Ce-GST), were investigated by in-situ AC impedance spectroscopy. In conjunction with the brick layer model, the contributions of both the grain and the grain boundary to the phase-transition behaviors of chalcogenide samples could be distinguished; the results illustrated the dominance of the grain boundary in the phase transition process. Moreover, impedance analysis applied to characterize the effects of doping on the phase-transition kinetics yielded results similar to those obtained by conventional methods. Therefore, in-situ AC impedance spectroscopy is a feasible tool for analyzing the phase transitions of chalcogenides.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ovshinsky, S. R., Phys. Rev. Lett. 21, 1450 (1968).Google Scholar
2. Wutting, M. and Yamada, N., Nature Mater. 6, 824 (2007).Google Scholar
3. Redaelli, A., Pirovano, A., Pellizzer, F., and Lacaita, A. L., IEEE Electron Device Lett. 25, 684 (2004).Google Scholar
4. Pirovano, A. and Lacaita, A. L., IEEE Transactions on Electron Devices 51, 452 (2004).Google Scholar
5. Huang, Y.-J., Chen, Y.-C., and Hsieh, T.-E., J. Appl. Phys. 106, 034916 (2009).Google Scholar
6. Jurado, J. R., Colomer, M. T., and Frade, J. R., J. Am. Ceram. Soc. 83, 2715 (2000).Google Scholar
7. Rodewald, S., Fleig, J., and Maier, J., J. Am. Ceram. Soc. 84, 521 (2001).Google Scholar
8. van Dijk, T. and Burggraaf, A. J., Phys. Stat Sol. (a). 63, 229 (1981).Google Scholar
9. Verkerk, M. J., Middlehuis, B. J., and Burggraaf, A. J., Solid State Ionics 6, 159 (1982).Google Scholar
10. Huang, Y.-J., Tsai, M.-C., Wang, C.-H., and Hsieh, T.-E., Mat. Res. Soc. Symp. Proc. 1251E (2010).Google Scholar
11. Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burns, P.L., and Holmes, A.B., Nature 347, 539 (1990).Google Scholar