Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T08:50:23.621Z Has data issue: false hasContentIssue false

Study of Grain Boundaries in YBCO Thin Films Using Microraman Spectroscopy

Published online by Cambridge University Press:  15 February 2011

O. Martinez
Affiliation:
Fisica de la Materia Condensada, ETS Ingenieros Industriales, 47011 Valladolid, Spain
J. Jimenez
Affiliation:
Fisica de la Materia Condensada, ETS Ingenieros Industriales, 47011 Valladolid, Spain
P. Martin
Affiliation:
Fisica de la Materia Condensada, ETS Ingenieros Industriales, 47011 Valladolid, Spain
D. Chambonnet
Affiliation:
Alcatel Alsthom, Route de Nozay, 91460 Maccoussis, France
S. Degoy
Affiliation:
Alcatel Alsthom, Route de Nozay, 91460 Maccoussis, France
C. Belouet
Affiliation:
Alcatel Alsthom, Route de Nozay, 91460 Maccoussis, France
Get access

Abstract

MicroRaman spectroscopy allows to identify the presence of c| and c⊥ oriented grains in YBCO thin films. This is achieved by the observation of two Raman modes associated with the oxygen sublattice vibrations, ˜500 cm−1 and ˜338 cm−1. The relative intensity of these Raman modes is related to the presence of c⊥ and c⊥;. oriented grains. Using the high lateral resolution of the Raman microprobe (<1 μm) some needle shaped grains of the films were scanned. The different Raman parameters were analyzed, showing noteworthy transformations at the [c|;]/[c⊥] boundaries. In particular the Raman mode corresponding to the out of phase O (2)– O(3) in plane vibrations (˜338 cm−1) was found to be narrowed, which should account for a decoupling of the phonon with the electronic continuum.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Albrecht, W., Langheinrich, W., Kurz, H., Poppe, U., Stolner, H. and Schubert, J., J.Appl.Phys. 68, 3778 (1990).Google Scholar
2. Borghs, G., DeBoeck, J., Francois, I., Chambonnet, D., Belouet, C., Crosnier, Y., Carru, J. C., Chauvel, D., Arnaud, L., Boucher, H., Villegier, J. C., Nicoletti, S., Correra, L. and Jimenez, J., J.Phys. IV C6, 189 (1994).Google Scholar
3. Pinto, R., Goyal, N., Pai, S. P., Apte, P. R., Gupta, L. C. and Vijayaraghavan, R., J.Appl.Phys. 73, 5105 (1993).Google Scholar
4. Thomsen, C., Cardona, M. and Liu, R., J.Less Comm. Metals 150, 33 (1989).Google Scholar
5. Sacuto, A. and Balkanski, M., J.Alloys and Compds. 195, 359 (1993).Google Scholar
6. Burns, G., Dacol, F. H., Feidl, C. and Holtzberg, F., Sol.St. Commun. 77, 367 (1991).Google Scholar
7. Altendorf, E., Chen, X. K., Irwin, J. C., Liang, R. and Hardy, W. N., Phys.Rev.B 47, 8140 (1993).Google Scholar
8. Degoy, S., Jimenez, J., Martin, P., Martínez, O., Prieto, A. C., Chambonnet, D., Audry, C., Belouet, C. and Perrière, J., Physica C (unpublished).Google Scholar
9. Liu, R., Thomsen, C., Kress, W., Cardona, M., Gegenheimer, B., de Wette, F. W., Prade, J., Kulkarni, A. D. and Schoerder, U., Phys. Rev. B 37, 7971 (1988).Google Scholar
10. Farrow, L. A., Venkatesan, T., Bonner, W. A., Wu, X. D., Inam, A. and Hedge, M. S., J. Appl. Phys. 65, 4452 (1989).Google Scholar
11. Heidelbach, F., Wenk, H. R., Muenchansen, R. E., Foltyn, S., Nogar, N. and Rollett, A. D., J.Mater Res. 7, 549 (1992).Google Scholar
12. Campero, A. Mogro, Turner, L. G., Kadin, A. M. and Mallory, D. S., J.Appl.Phys. 73, 5295 (1993).Google Scholar
13. Schilling, M., Goerke, F. and Merkt, U., in High Tc Superconductor Thin Films, edited by Correra, L. (Elsevier Science Publishers, Amsterdam 1992), p. 535.Google Scholar
14. Friedl, B., Thomsen, C. and Cardona, M., Phys. Rev. Lett. 65, 915 (1990).Google Scholar