Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T01:47:22.705Z Has data issue: false hasContentIssue false

A Study of [Cr-O6]-based rutile analogues by means of EELS

Published online by Cambridge University Press:  01 February 2011

Angel M. Arevalo-Lopez
Affiliation:
[email protected], Universidad Complutense de Madrid, Quimica Inorganica, Madrid, Madrid, Spain
Elizabeth Castillo-Martinez
Affiliation:
[email protected], Universidad Complutense de Madrid, Quimica Inorganica, Madrid, Madrid, Spain
Miguel Ángel Alario-Franco
Affiliation:
[email protected], Universidad Complutense de Madrid, Quimica Inorganica, Madrid, Spain
Get access

Abstract

We present in here the study by means of electron energy loss spectroscopy (EELS) of several rutile based oxides, having in common the presence of octahedrally oxygen coordinated chromium, [Cr-O6], in three different formal oxidation states: Cr4+ in CrO2, a regular rutile; Cr3+ in CrOOH, a H bonded orthorrombic distorted rutile and in CrTaO4, a metal disordered rutile and Cr2+ in CrTa2O6 an ordered trirutile structure. A linear relationship is observed between the formal oxidation state of chromium in all these rutile oxides and the separation between the Cr-L2,3 and O-K energy loss peaks.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Potapov, P. L., Jorissen, K., Schryvers, D., and Lamoen, D., Phys. Rev. B. 70, 045106 (2004)Google Scholar
2. Kurata, H. and Colliex, C., Phys. Rev. B. 48, 2102 (1993).Google Scholar
3. Riedl, T., Gemming, T., and Wetzig, K., Ultramicroscopy. 106, 284 (2006).Google Scholar
4. Stoyanov, F. L. E. and Steinle-Neumann, G., Am. Mineral. 92, 577 (2007).Google Scholar
5. Daulton, T. and Little, B., Ultramicroscopy. 106, 561 (2006).Google Scholar
6. Suzuki, S. and Tomita, M., Jpn. J. Appl. Phys. 36, 4341 (1997).Google Scholar
7. Korotin, M. A., Anisimov, V. I., Khomskii, D. I., and Sawatzky, G. A., Phys. Rev. Lett. 80, 4305 (1998).Google Scholar
8. Arévalo-López, A. M., Castillo-Martínez, E., and Alario-Franco, M. A., J. Phys.Condens. Matter. 20, 505207 (2008).Google Scholar
9. Bernier, J., C. R. Acad. Sc. Paris. 273, 1166 (1971).Google Scholar
10. Alario-Franco, M. A. and Sing, S. W., J. Thermal Analysis and Calorimetry. 4, 47 (1972).Google Scholar
11. Muller, D. A., Singh, D. J. and Silcox, J., Phys. Rev. B. 57, 8181 (1998).Google Scholar
12. Egerton, R. F.. “Electron Energy-Loss Spectroscopy in the Electron Microscope”. (Plenum Press, 1996).Google Scholar
13. Ikemoto, I., Ishii, K., Kinoshita, S., Kuroda, H., Alario-Franco, M. A. and Thomas, J. M.. J. Solid. State. Chem. 17, 425, (1976).Google Scholar
14. Chen, J. G., Surface Science Reports 30, 1 (1997).Google Scholar
15. Pearson, D., Ahn, C., and Fultz, B., Phys. Rev. B. 47, 8471 (1993).Google Scholar
16. Castillo-Martinez, E., Arévalo-López, A. M., Ruíz-Bustos, R. and Alario-Franco, M. A., Inorg. Chem. 47, 8526 (2008).Google Scholar