Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T21:07:54.476Z Has data issue: false hasContentIssue false

Study of Cloisonné enamel glaze of decorative components from Fuwangge in the Forbidden City by means of LA-ICP-MS and micro-Raman Spectroscopy

Published online by Cambridge University Press:  21 August 2014

Hongying Duan
Affiliation:
Conservation Department, the Palace Museum, Beijing, 100009, China
Liang Qu*
Affiliation:
Conservation Department, the Palace Museum, Beijing, 100009, China
Xiaolin Cheng
Affiliation:
Center for Conservation, National Museum of China, Beijing, 100006, China
Yan Su
Affiliation:
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
Aiguo Shen
Affiliation:
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
Shiwei Wang
Affiliation:
Architecture Department, the Palace Museum, Beijing, 100009, China
*
*Corresponding author, email: [email protected]
Get access

Abstract

Two Cloisonné enamel architectural components from Fuwangge in the Forbidden City that were produced from Yangzhou (one production center) in Qing Dynasty (1616-1911 A.D.) were chosen and analyzed. A combination of Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and micro-Raman spectroscopy was successfully used to analyze eight colors in enamel glazes (yellow, white, pink, turquoise, yellow green, deep blue, red and deep green). Chemical composition results reveal that the enamel glaze matrix belongs to lead-potash-lime glass (PbO-K2O-CaO-SiO2). Based on Raman spectroscopy, lead-tin yellow types II, cassiterite, lead arsenate, fluorite and hematite were found as opacifiers and/or colorants. In addition, a detailed discussion of raw materials, such as fluorite and borax, might provide valuable information to trace manufacturing technology and provenance.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brinker, H., Lutz, A., in Chinese cloisonnes. The pierre uldry collection,(The Asian Society Publishers, New York, 1989) p.23.Google Scholar
Zhang, SX., in From Palace to local - The technological exchange of 17th and 18th centuries, (Forbidden City Press, Beijing, 2010) p.163.Google Scholar
Li, Y. and Wang, Shiwei, Forbidden City. 207, 1023 (2012).Google Scholar
Kashchieva, E., Tsaneva, S., Dimitriev, Y. and Kirov, R., Journal of Non-Crystalline Solids. 323, 137142 (2003).10.1016/S0022-3093(03)00282-5CrossRefGoogle Scholar
Weldon, M., Carlson, J., Reedy, S. and Swann, C. P., Nuclear Instruments and Methods in Physics Research. B109/110, 653657 (1996).10.1016/0168-583X(95)00986-8CrossRefGoogle Scholar
Chamón, J., Gutierrez, P. C., Barrio, J., Climent-Font, A. and Arroyo, M., Appl Phys. A 99, 377381 (2010).10.1007/s00339-010-5634-zCrossRefGoogle Scholar
Stapleton, C.P., Freestone, I. C. and E Bowman, S. G., J. Archaeol. Sci. 26, 913–92 (1999).10.1006/jasc.1999.0399CrossRefGoogle Scholar
Rohrs, S. and Stege, H., X-Ray Spectrometry. 33, 396401(2004).10.1002/xrs.713CrossRefGoogle Scholar
Henderson, J., Tregear, M. and Wood, N., Archaeometry. 31 (2), 133146 (1989).10.1111/j.1475-4754.1989.tb01009.xCrossRefGoogle Scholar
Miao, JM., Journal of Palace Museum, 111, 139155 (2004).Google Scholar
Kırmızı, B., Colomban, P. and Quette, B., J. Raman Spectrosc. 41, 780790 (2010).10.1002/jrs.2566CrossRefGoogle Scholar
Biron, I., Quette, B., Techne. 6, 35 (1997).Google Scholar
Gratuze, B., J. Archaeol. Sci. 26 (8), 869881 (1999).10.1006/jasc.1999.0459CrossRefGoogle Scholar
Eckert, S. L., James, W. D., J. Archaeol. Sci. 38, 21552170 (2011).10.1016/j.jas.2011.03.009CrossRefGoogle Scholar
Dussubieuxa, L., Robertshawb, P. and Glascockc, M., International Journal of Mass Spectrometry, 284, 152161 (2009).10.1016/j.ijms.2008.11.003CrossRefGoogle Scholar
Li, QH., Liu, S., Su, BM., Zhao, HX., Fu, Q. and Dong, JQ., Microscopy Research and Technique. 76(2), 133140 (2012).10.1002/jemt.22144CrossRefGoogle Scholar
Zhao, L., Li, H., Mu, D., Wang, JH. and JM, , in Corpus of the International Symposium on Ancient Ceramics, edited by Luo, HJ. and Zheng, XM. (Shanghai Science and Technology Publishers, Shanghai, 2009). p.424433.Google Scholar
Kirmizi, B., Colomban, P. and Blanc, M., J. Raman Spectrosc. 41, 12401247 (2010).10.1002/jrs.2566CrossRefGoogle Scholar
Qu, L., Thesis,University of Science and Technology Beijing, 2013.Google Scholar
Gan, FX., in Development of Ancient Chinese Glass Technology, (Shanghai Science and Technology Publishers, Shanghai, 2005). p.236.Google Scholar
Yi, JL., Tu, XJ., J chin Ceram Soc. 12 (4) ,404410 (1984).Google Scholar
Li, F., Li, QH., Gan, FX., Zhang, B. and Chen, HS.. J chin Ceram Soc. 33(5), 584 (2005).Google Scholar
Yang, BD., Journal of Palace Museum, 48, 1718 (1990).Google Scholar
Li, JF., Journal of Palace Museum, 66, 1227(1994).Google Scholar
Wang, SX., Journal of Palace Museum, 22, 6173(1983).Google Scholar
Bertran, H., Nouveau Manuel Complet de la Peinture sur Verre, sur Porcelaine et sur Email, Edited by Mulot, L. (Encyclop´edie-Roret, Paris, 1913). p.405.Google Scholar
Zhao, KH., Studies in the History of Natural Sciences, 10 (2) ,145146 (1991).Google Scholar
England, P., Y.Watt, J. C. and Zelst, L. V., Scientific Research in Early Chinese Glass, Edited by Brill, R. H. and Martin, J. H. (The Corning Museum of Glass, New York, 1991). p.103.Google Scholar
Yang, BD., Journal of Palace Museum, 34, 317 (1986).Google Scholar
Zhang, FK. and Zhang, ZG., J chin Ceram Soc. 8(4), 339350 (1980).Google Scholar
Xin, ZH., Ceramics Science & Art, 9, 7173 (2008) .Google Scholar
Yi, JL. and Tu, XJ., Scientific Research in Early Chinese Glass, Edited by Brill, R. H. and Martin, J. H. (The Corning Museum of Glass, New York, 1991). p.99.Google Scholar
Turner, W.E.S.. Proc. Chem. Soc, 4, 93 (1961).Google Scholar
Welter, N., Schussler, U. and Kiefer, W., J. Raman Spectrosc. 38, 113121 (2006).10.1002/jrs.1637CrossRefGoogle Scholar
Zhao, HX., Li, QH., Liu, S. and Gan, FX., J. Raman Spectrosc. 44, 643649 (2013).10.1002/jrs.4239CrossRefGoogle Scholar
Freestone, I., in Science and the Past, Edited by Bowman, S. (University of Toronto Press, Toronto, 1991) p.3756.Google Scholar
Ricciardi, P., Colomban, P., Tournie, A. and Milande, V., J. Raman Spectrosc. 40, 604617 (2009).10.1002/jrs.2165CrossRefGoogle Scholar
Tournie, A., Prinsloo, L. C. and Colomban, P., J. Raman Spectrosc. 43, 532542 (2012).10.1002/jrs.3069CrossRefGoogle Scholar
Linden, V. V., Schalm, O., Houbraken, J., Thomas, M., Meesdom, E., Devos, A., Dooren, R. V., Nieuwdorp, H., Janssen, E. and Janssens, K., J. Raman Spectrosc. 39, 112121 (2010).Google Scholar
Miao, JM., Yang, BR. and Wang, JH., in Corpus of the International Symposium on Ancient Ceramics, edited by Luo, HJ. and Zheng, XM. (Shanghai Science and Technology Publishers, Shanghai, 2009). p.441446.Google Scholar
Wood, N., Chinese Glaze, (A & C Black, London, 1999). p.63.Google Scholar
Brun, N. and Pernot, M., Archaometry. 34(2), 235252(1992).10.1111/j.1475-4754.1992.tb00495.xCrossRefGoogle Scholar
Stapleton, C.P., Freestone, I. C. and E Bowman, S. G., J. Archaeol. Sci. 26, 913–92 (1999).10.1006/jasc.1999.0399CrossRefGoogle Scholar
Colomban, P. and Truong, C., J. Raman Spectrosc. 35, 195 (2004).10.1002/jrs.1128CrossRefGoogle Scholar
Henderson, J., Oxford Journal of Archaeology, 4. 267291 (1985).10.1111/j.1468-0092.1985.tb00248.xCrossRefGoogle Scholar
Prinsloo, L. C., Colomban, P. and Tournie, A., 4th International Conference on the Application of Raman Spectroscopy in Art and Archaeology, Modena, 3–7 sept. 2007.Google Scholar