Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T18:32:12.235Z Has data issue: false hasContentIssue false

A Study of Atomic Layer Deposition and Reactive Plasma Compatibilitywith Mesoporous Organosilicate Glass Films

Published online by Cambridge University Press:  01 February 2011

E. Todd Ryan
Affiliation:
Advanced Micro Devices, 1 AMD Place, Sunnyvale, CA 94088
Melissa Freeman
Affiliation:
Motorola, APRDL, 3501 Ed Bluestein Blvd., Austin, TX 78721
Lynne Svedberg
Affiliation:
Motorola, APRDL, 3501 Ed Bluestein Blvd., Austin, TX 78721
J.J. Lee
Affiliation:
Motorola, APRDL, 3501 Ed Bluestein Blvd., Austin, TX 78721
Todd Guenther
Affiliation:
Motorola, APRDL, 3501 Ed Bluestein Blvd., Austin, TX 78721
Jim Connor
Affiliation:
Motorola, APRDL, 3501 Ed Bluestein Blvd., Austin, TX 78721
Katie Yu
Affiliation:
Motorola, APRDL, 3501 Ed Bluestein Blvd., Austin, TX 78721
Jianing Sun
Affiliation:
University of Michigan, Department of Physics, Ann Arbor, MI, 48109
David W. Gidley
Affiliation:
University of Michigan, Department of Physics, Ann Arbor, MI, 48109
Get access

Abstract

The compatibility of ALD and CVD metal deposition with mesoporous and microporous carbon-doped organosilicate glass (OSG) films was examined. Blanket film studies using TEM, TOF-SIMS, and positron lifetime spectroscopy demonstrate that ALD Wand TaN penetrate deep into the mesoporous film via the film's connected pore structure. In contrast, metal penetration into microporous OSG films was not observed. He and NH3 plasma pretreatments to the mesoporous OSG film surface did not seal the mesopores to ALD metal penetration, but the plasmas did damage the bulk of the mesoporous OSG film with varying severity. The results indicate that porosity, pore size, and/or pore structure regulate ALD/CVD precursor diffusion and that ALD metal deposition is a good probe of pore sealing strategies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lee, W.W. and Ho, P.S.. MRS Bulletin, 22, 19 (1997).Google Scholar
2. Rossnagel, S.M. and Kim, H., Proceedings of the IEEE 2001 International Interconnect Technology Conference, 3-5 (2001).Google Scholar
3. Gidley, D.W., Frieze, W.E., Dull, T.L., Yee, A.F., Ho, H.M., and Ryan, E.T.. Phys. Rev. B, 60(8), R5157 (1999).Google Scholar
4. Ryan, E.T., Martin, J., Junker, K., Wetzel, J., Sun, J.N., and Gidley, D.W.. J. Mat. Res. 16(12), 3335 (2001).Google Scholar
5. Sun, J.N., Gidley, D.W., Hu, Y., Frieze, W.E., Ryan, E.T.. Appl. Phys. Lett. 81(8), 1447 (2002).Google Scholar
6. Ryan, E.T., Martin, J., Junker, K., Lee, J.J., Guenther, T., Wetzel, J., Lin, S., Gidley, D.W., Sun, J.. Proceedings of the IEEE 2002 International Interconnect Technology Conference, 27 (2002).Google Scholar
7. Chang, T.C., Liu, P.T., Mor, Y.S., Sze, S.M., Yang, Y.L., Feng, M.S., Pan, F.M., Dai, B.T., and Chang, C.Y., J. Electrochem. Soc. 146(10), 3802 (1999).Google Scholar
8. Liu, P.T., Chang, T.C., Yang, Y.L., Cheng, Y.F., and Sze, S.M., IEEE Trans. Elect. Dev. 47(9), 1733 (2000).Google Scholar
9. Besling, W., et al. Proceedings of the IEEE 2002 International Interconnect Technology Conference, 288 (2002); T. Abell, et al. AMC 2002, to be published.Google Scholar
10. Sun, J.N., Gidley, D.W., Dull, T.L., Frieze, W.E., Yee, A.F., Ryan, E.T., Lin, S., and Wetzel, J.. J. Appl. Phys., 89(9), 5138 (2001).Google Scholar
11. Gidley, D.W., Frieze, W.E., Dull, T. L., Sun, J.N., and Yee, A.F.. Mater. Res. Soc. Symp. Proc. 612, 2000, D4.3.1. Google Scholar
12.A detailed analysis of the PALS data is in progress for a later publication.Google Scholar