Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:54:02.440Z Has data issue: false hasContentIssue false

Studies on the Structure and Properties of Ceramic/Polymernanocomposites

Published online by Cambridge University Press:  10 February 2011

Xiaohe Chen
Affiliation:
Polymer Science Program at the Institute of Materials Science and Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
Get access

Abstract

Unique synthetic approaches for the synthesis of homogeneously dispersed and highly loaded aluminum nitride (AIN) / polyimide (PI) nanocomposites have been developed. The effective interactions at the solid-liquid interface during the preparation of stable dispersions of ceramic/polymers have been investigated. In particular, the surface chemical composition of the nanoparticles has been analyzed. Characteristic model reactions on the surface have been carried out, which revealed the mechanisms for the deagglomeration and stabilization of nanoparticles via chemisorption reactions. Moreover, compared to other synthetic approaches, this method demonstrates the capability of preparing extremely highly loaded nanocomposites and being applicable to a wide range of materials. The thermal and mechanical properties of the A1N/PI nanocomposite have also been studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. (a)Gleiter, H., Adv. Mater. 4, 474 (1992);Google Scholar
2. (a)Siegel, R.W., Nanostruct. Mater. 3, 1 (1993); (b)R. Dagani, Chem. Eng. News 72(47), 18 (1992).Google Scholar
3 (a)Andres, R.P., Averback, R.S., Brown, W.L., Brus, L. E., III,Goddard, W.A., Kaldor, A., Louie, S.G., Moscovits, M., Peercy, P.S., Riley, S.J., Siegel, R.W., Spaepen, F., Wang, Y., J. Mater. Res. 4(3), 704 (1989); (b)H. Gleiter, Nanostruct. Mater. 1, 1 (1992); (c) R. Birringer, H. Gleiter, Encyclopedia of Materials Science & Engineering, Suppl. Vol. 1, edited by Cahn, R.W., (Pergamon Press, Cambridge, 1988), p. 339.Google Scholar
4. (a) Andrievski, R.A., J. Mater. Sci. 29, 614 (1994); (b)R.W. Siegel, Mater. Sci. and Eng. B19, 37–43 (1993); (c)R.D. Shull, L.E. Bennett, Nanostruct. Mater. 2, 1, 53 (1992); (d) C. Suryanaraya, F.H. Froes, Metall. Trans. 23A, 1071 (1992); (e)G.M. Whitesides, J.P. Mathias, C.T. Seto, Science 254, 1312 (1991).Google Scholar
5. Gonsalves, K.E., Chow, G.M., Xiao, T.D., Cammarata, R.C., Molecularly Designed Ultrafine/Nanostructured Materials, MRS Symposium Proceedings, Vol. 351, (1994).Google Scholar
6. Yacaman, M.J., Tsakalakos, T., Kear, B.H., ”Proceedings of the First International Conference on Nanostructured Materials”, Special Proceedings Vol., Nanostruct. Mater., 3(1–6), (1993).Google Scholar
7. Ichinose, N., Ozaki, Y., Kashu, S., Superfine Particle Technology, (Springer-Verlag, London, 1992). (Translated from Japanese)Google Scholar
8. Gonsalves, K.E., Chow, G.M., ”Particle Synthesis by Chemical Route”, Nanostructured Materials: Synthesis, Properties, and Uses, (Inst. of Physics, UK 1996), Chapt. 3.Google Scholar
9. Chakravorty, D., Giri, A. K., ”Nanomaterials”, chapter in Chemistry for the 21st Century: Chemistry of Advanced Materials, edited Rao, C.N.R., (Blackwell Scientific Publications, London, 1993), p. 217.Google Scholar
10. Lukehart, C.M., Carpenter, J.P., Milne, S.B., Burnam, K.J., CHEMTECH 8, 29 (1993).Google Scholar
11. (a)Calvert, P., Mater. Sci. Engi. C 1, 69 (1994); (b)J. Burdon, J. Szmania, P. Calvert, in Molecularly Designed Ultrafine/Nanostructured Materials, edited by Gonsalves, K.E., Chow, G.M., Xiao, T.D., Cammarata, R.C., MRS Symposium Proceedings, Vol 351, 1994, p. 103; (c) Sukun Zhang, K.E. Gonsalves, ibid, p. 245.Google Scholar
12. (a)Gonsalves, K.E., Chow, G.M., Zhang, Y., Budnick, J.I., Xiao, T.D., Adv. Mater. 6, 4, 291 (1994); (b)R.D. Shull, R.D. McMichael, J.J. Ritter, Nanostruct. Mater. 2, 205 (1993); (c)R.F. Ziolo, E. P. Giannelis, B.A. Weinstein, M. P. O'Horo, B.N. Ganguly, V. Mehrotra, M. W. Russell, D. R. Huffman, Science 257, 219 (1992).Google Scholar
13. (a)Bloemer, M.J., Haus, J.W., Ashley, P.R., J. Opt. Soc. Am., 7B 5, 790 (1990); (b)A.W. Olsen, Z. H. Kafafi, J. Am. Chem. Soc. 113, 20, 7758 (1991); (c) K.E. Gonsalves, G. Carlson, J. Kumar, F. Avanda, M. Jose-Yacaman, Nanotechnology: Molecularly Designed Materials, ACS Symposium Series, Vol 622, edited by Gonsalves, K., Chow, G.M., (ACS, D.C., 1996), p. 151- 161.Google Scholar
14. Messersmith, P.B., Giannelis, E.P., Chem. Mater. 5, 1064 (1993); ibid, 5, 1694 (1993).Google Scholar
15. Pugh, R.J., Bergstrom, L., Surface and Colloid Chemistry in Advanced Ceramics Processing, Surfactant Science Ser., Vol.51, (Marcel Dekker, 1994).Google Scholar
16. (a)Napper, D.H., Polymer Stabilization of Colloidal Dispersions, (Academic Press, 1983); (b)P.Dubin, P. Tong, Colloid-Polymer Interactions: Particulate, Amphiphilic, and Biological Surfaces, ACS Symp. Ser., Vol. 532, (American Chemical Society, 1993).Google Scholar
17. Tadros, T.F. (Ed), Solid/Liquid Dispersions, (Academic Press, 1987), p.9 1.Google Scholar
18. Chen, X., Gonsalves, K.E., Chow, G.M., Xiao, T.D., Adv. Mater. 6, 6, 481 (1994).Google Scholar
19. Baraton, M.I., Chen, X., Gonsalves, K.E., Nanotechnology: Molecularly Designed Materials, ACS Symposium Series, Vol 622, edited by Gonsalves, K., Chow, G.M., (ACS, D.C., 1996), p. 312.Google Scholar
20. Fowkes, F.M., Dwight, D.W., Manson, J.A., Lloyd, T.B., Tishler, D.O., Shah, B.A., Mater. Res. Soc. Symp. Proc. Vol.119, 223, (1988).Google Scholar
21. Sekiguchi, H., in Ring-Opening Polymerization, Vol 2, Ed. by Ivin, K.J., Saegusa, T., (Elsevier Applied Science Publishers, 1984), chapter 12.Google Scholar
22. Tahara, T., Imazaki, H., Aoki, K., Yamazaki, H., J. Organometa. Chem. 327, 157 (1987).Google Scholar
23. (a)McDermott, D.P., J. Phys. Chem. 90, 2569 (1986); (b)P.S. Peek, D.P. McDermott, Spectrochimica Acta 44 A, 4, 371 (1988).Google Scholar
24. Egashira, M., Shimizu, Y., Takao, Y., Yamaguchi, R., Ishikawa, Y., J. Am. Ceram. Soc., 77(7), 1793 (1994)Google Scholar
25. (a) Messersmith, P.B., Giannelis, E.P., Chem. Mater. 6, 1719 (1994); (b)T.J. Pinnavaia, T. Lan, Z. Wang, H. Shi, P.D. Kaviratna, Nanotechnology: Molecularly Designed Materials, ACS Symposium Series, Vol 622, edited by Gonsalves, K., Chow, G.M., (ACS, D.C., 1996), p. 250.Google Scholar
26. Lin, T., Stickney, K.W., Rogers, M., Riffle, J.S., McGrath, J.E., Marand, H., Polymer 34(4), 772 (1993).Google Scholar
27. Bessonov, M.I., Zubkov, V.A., Polyamic acids and Polyimides: Synthesis, Transformations, and Structure (CRC Press, Inc., 1993), p. 38.Google Scholar
28. Li, L., Chung, D.D.L., J. Elect. Mater. 23(6), 557 (1994).Google Scholar
29. Sheppard, L. M., Ceramic Bulletin 69(11), 1801 (1990).Google Scholar
30. Mroz, T. J. Jr., Ceramic Bulletin 75(5), 782 (1992).Google Scholar
31. Dobrynin, A.V., Inorg. Mater. 28(7), 1063 (1992).Google Scholar
32. Hirano, M., Yamauchi, N., J. Mater. Sci. 28, 5737 (1993).Google Scholar