Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T08:20:42.754Z Has data issue: false hasContentIssue false

Studies on Domain Inversion in LiNbO3and LiTaO3

Published online by Cambridge University Press:  10 February 2011

Y. Y. Zhu
Affiliation:
National Laboratory of Solid State Microstructure, Nanjing University Center for Advanced Studies in Science and Technology of Microstructures Nanjing 210093, China
S. N. Zhu
Affiliation:
National Laboratory of Solid State Microstructure, Nanjing University Center for Advanced Studies in Science and Technology of Microstructures Nanjing 210093, China
Z. Y. Zhang
Affiliation:
National Laboratory of Solid State Microstructure, Nanjing University Center for Advanced Studies in Science and Technology of Microstructures Nanjing 210093, China
N. B. Ming
Affiliation:
National Laboratory of Solid State Microstructure, Nanjing University Center for Advanced Studies in Science and Technology of Microstructures Nanjing 210093, China
Get access

Abstract

Domain inverted structures in LiNbO3 (LN) and LiTaO3 (LT) are fabricated by proton exchange followed by rapid heat treatment. The formation and development of the effects of pyroelectric field on domain inversion are investigated. The proton and lithium profiles are measured by SIMS. The Curie temperature of the proton exchanged LT is evaluated by DSC. An internal electric field model is proposed to explain the domain inversion mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Feng, D., Ming, N.B., Hong, J.F., Yang, Y.S., Zhu, J.S., Yang, Z. Wang, Y.N., Appl.Phys.Lett. 37, 607(1980).Google Scholar
2. Ming, N.B., Hong, J.F. and Feng, D., J.Mater.Sci. 17, 1663(1982).Google Scholar
3. Feng, D., Wang, W.S., Zhou, Q. and Geng, Z.H., Chinese Phys.Lett. 3, 181(1986).Google Scholar
4. Magel, G.A., Fejer, M.M. and Byer, R. L., Appl.Phys.Lett. 56, 108(1990).Google Scholar
5. Lim, E.J., Fejer, M.M., Byer, R. L. nad Kozlovsky, W.J., Electron.Lett. 25, 731(1989).Google Scholar
6. Mizuuchi, K., Yamamoto, K. and Sato, H., Appl.Phys.Lett. 62, 1860(1993).Google Scholar
7. Ito, H., Tahyu, C. and Inaba, H., Electron.Lett. 27, 1221(1991).Google Scholar
8. Yamada, H., Nada, N., Saitoh, M. and Watanabe, K., Appl.Phys.Lett. 62, 435 (1993).Google Scholar
9. Zhu, Y.Y., Zbu, S.N., Hong, J.F. and Ming, N.B., Appl.Phys.Lett. 65, 558(1994).Google Scholar
10. Denton, R.T., Chen, F. S. and Ballman, A.A., J.Appl.Phys. 38, 1611(1967).Google Scholar
11. Nakamura, K., Hosoya, M. and Tourlog, A., J.Appl.Phys. 73, 1390(1993).Google Scholar
12. Kugel, V.D. and Rosenman, G., Appl.Phys.Lett. 62, 2902(1993).Google Scholar
13. Huang, L.S. and Faeger, N.A.F., Appl.Phys.Lett. 65, 1763(1994).Google Scholar
14. Ahlfeldt, H., Appl. Phys. Lett. 64, 3213(1994).Google Scholar
15. Wilson, R.G., Novak, S.W., Zavada, J.M., Loni, A. and Rue, R.M. De La, J.Appl.Phys. 66, 6055(1989).Google Scholar
16. Casey, H. C. Jr., Chen, C.H., Zavada, J.M. and Novak, S.W., Appl.Phys.Lett. 63, 718(1993).Google Scholar