Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T15:45:32.706Z Has data issue: false hasContentIssue false

Studies of Temperature-Dependent Excimer-Monomer Conversion in Dendrimeric Antenna Supermolecules by Fluorescence Spectroscopy

Published online by Cambridge University Press:  21 March 2011

Youfu Caoa
Affiliation:
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
Jeffrey S. Moore
Affiliation:
Department of Chemistry, University of Illinois, Urbana, IL 61801
Raoul Kopelman*
Affiliation:
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
*
*Correspondence Author: [email protected]
Get access

Abstract

Phenylacetylene (PA) dendrimer labeled with perylene (See Fig 1) is discovered to exhibit temperature-dependent emission spectra in certain organic solvents over the temperature range of 20-65°C. The monomer signal is increasing rapidly when temperature increases, while the excimer signal decreases slowly. Models of excimer formation and weakly associated pairs (M+M) dissociation dynamics are included, and the equilibrium constants at different temperatures are calculated. This behavior suggests potential applications in fluorescence-based thermometry.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Xu, Z.; Moore, J. S. Acta Polym 1994, 45, 83.Google Scholar
2. Swallen, S. F; Shortreed, M. R.; Shi, Z. Y.; Tan, W., Xu, Z.; Devadoss, C.; Moore, J.S.; Kopelman, R. (Cairo) Dendrimeric Antenna Supermolecules with Multistep Directed Energy Transfer in Science and Technology of Polymers and Advanced Materials; Prasad, P. N.; Plenum Press: New York, 1998 Google Scholar
3. Shortreed, M. R.; Swallen, S. F.; Shi, Z. -Y.; Tan, W.; Xu, Z.; Devadoss, C.; Moore, J. S.; Kopelman, R. J. Phys. Chem. B. 1997, 101, 6318–22.Google Scholar
4. Bar-Haim, A.; Klafter, J; Kopelman, R. J. Am. Chem. Soc. 1997, 26, 6197 Google Scholar
5. Tretiak, S.; Cherniak, V.; Mukamel, S. J. Phys. Chem. B 1998, 102, 3310–15Google Scholar
6. Junge, B. M.; McGrath, D. V. Chem Commun. 1997, 9, 857 Google Scholar
7. Tomalia, D. A.; Naylor, A. M.; Goddard, W. Angew, A.. Chem., Int. ED Engl 1990, 29, 138.Google Scholar
8. Kopelman, R.; tan, W. Appl. Spectrosc. Rev. 1994, 29, 39 Google Scholar
9. Tan, W.; Kopelman, R. In Fluorescence Imaging Spectroscopy and Microscopy; Wang, X. F., Herman, B., Eds.; Wiley: New York, 1996; pp407475.Google Scholar
10. Kopelman, R. & Tan, W. Science 262, 13821384 (1993)Google Scholar
11. Michaells, J.; Hettich, C.; Mlynek, J. & Sandoghdar, V., Nature, 405, 325327 (2000)Google Scholar
12. Aida, T.; Sata, T.; Jiang, D.L., J. Am. Chem. Soc. 121, 10658, 1999 Google Scholar
13. Swallen, S.F.; Kopelman, R.; Moore, J.S.; Devadoss, C., Journal of Molecular Structure, 485–486 (1999) 585597 Google Scholar
14. Swallen, S.F.; Xu, Z.G.; Moore, J. S.; Kopelman, R, J. Phys. Chem B, Vol 104, No.16, 2000 Google Scholar
15. Lou, J. F.; Hatton, T. A.; Laibinis, P. E., Anal. Chem., 1997, 69, 12621264 Google Scholar
16, Lou, J. F.; Finegan, T. M.; Mohsen, P.; Hatton, T. A. & Laibinis, P. E. Reviews in Analytical Chemistry, Vol. 18, No. 4, 1999 Google Scholar