Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T06:56:27.176Z Has data issue: false hasContentIssue false

Structure of Single-Crystal Gd2 O3 Films on GaAs(100)

Published online by Cambridge University Press:  10 February 2011

A. R. Kortan
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974–0636
M. Hong
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974–0636
J. Kwo
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974–0636
J. P. Mannaerts
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974–0636
N. Kopylov
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974–0636
Get access

Abstract

We have studied the single-crystal Gd2 O3 films grown epitaxially on GaAs(100) substrate with single-crystal x-ray diffraction. The sesquioxide Gd2 O3 forms two hexagonal phases, one monoclinic and one cubic phase in bulk form. In our studies of different thickness films, we have found that the Gd2 O3 grows only in the cubic phase with a unique epitaxial orientation. The two-fold (110) planes of the Gd2 O3 are oriented parallel to the four-fold GaAs(100) surface, while alligning its [001] and [110] axes with the [011] and [011] axes of GaAs within the plane, respectively. The film chooses only one of the two such possible orientations, which can be explained by the local bonding configuration at the interface. We find evidence for an elastic strain in the films less than 50 A thick.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Hong, M., Passlack, M., Mannaerts, J.P., Kwo, J., Chu, S.N.G., Moriya, N., Hou, S.Y., and Fratello, V.J., J. Vac. Sci. Technol. B 14 (30), May/June, 2297, 1996.Google Scholar
[2] Hong, M., Kwo, J., Kortan, A.R., Mannaerts, J.P., Sergent, A. M., Procedings of MRS Fall Meeting, 1998, Symposium D.Google Scholar
[3] Hong, M., Kwo, J., Kortan, A.R., Mannaerts, J.P., Sergent, A. M., Science xx, xx, 1999.Google Scholar
[4] Hashizume, T., Ikeya, K., Mutoh, M., Hasegawa, H., Applied Surface Science, 123 599, (1998).Google Scholar
[5] “Progress in the Science and Technology of the Rare Earths” Edited by LeRoy Eyring Volumes, 2, 3, 4, 5, Pergamon Press and North Holland Publishing, (1982).Google Scholar
[6] Zachariasen, W., Z. Kristallogr., 67, 455 (1928).Google Scholar
[7] Pauling, L., Shappell, M.D., Z. Kristallogr., 75, 128 (1930).Google Scholar
[8] Geller, S., Acta Cryst. B27,821, 1971.Google Scholar
[9] Grier, D., McCarthy, G., North Dakota State University, Fargo, North Dakota, ICDD Grant-in-aid, Volume [CD]: 1264.27, (1991).Google Scholar
[10] Hall, R. and Bean, J.C., in “Strained-Layer Superlattices: Materials Science and Technology”, edited by T.P., Pearsall, page 1, Academic Press, (1991).Google Scholar
[11] Fritz, I.J., Picraux, S.T., Dawson, L.R., Drummond, T.J., Laidig, W.D., Anderson, N.G., Appl. Phys. Lett., 46,967, (1985).Google Scholar
[12] Sidorov, Yu. G., Dvoretsky, S.A., Yakushev, M.V., Mikhailov, N.N., Varavin, V.S., Liberman, V.I., Thin Film Solids, 306, 253, (1997).Google Scholar
[13] Dehaese, O., Wallart, X., Schuler, O., Mollot, F., Japan. J. Appl. Phys., 36, 6620, (1997).Google Scholar