Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T10:12:53.228Z Has data issue: false hasContentIssue false

Structure Determination of Ba8CoRh6O21, a New Member of the 2H-Perovskite Related Oxides

Published online by Cambridge University Press:  18 March 2011

H.-C. zur Loye
Affiliation:
M. D. Smith
Affiliation:
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
K. E. Stitzer
Affiliation:
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
J. Darriet
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB-CNRS), Avenue du Dr. Schweitzer, 33608 Pessac Cedex, France
Get access

Abstract

Single crystals of Ba8CoRh6O21 were grown out of a potassium carbonate flux. The structure was solved by a general method using the superspace group approach. The superspace group employed was R3m(00γ)0s with a = 10.0431(1) Å, c1 = 2.5946(1) Å and c2 = 4.5405(1) Å, V = 226.60(1) Å3. Ba8CoRh6O21 represents the first example of an m = 5, n = 3 member of the A3n+3mA'nB3m+nO9m+6n family of 2H hexagonal perovskite related oxides and contains chains consisting of six consecutive RhO6 octahedra followed by one distorted CoO6 trigonal prism. These chains in turn are separated from each other by [Ba] chains.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schlenker, C.; Dumas, J. Crystal Chemistry and Properties of Materials with Quasi-One- Dimensional Structures, A Chemical and Physical Approach; Rouxel, J. (ed), D. Reidel Publishing Co.: Boston 1986, p. 135.Google Scholar
2. de Jongh, L. J.; Miedema, A. R. Adv. Phys. 1974, 23, 1.Google Scholar
3. Day, P. Solid State Chemistry Compounds, Cheetham, A.K.; Day, P. (eds), Clarendon Press: Oxford 1992, Chp. 2.Google Scholar
4. Nguyen, T. N.; Giaquinta, D. M.; zur Loye, H.-C. Chem. Mater. 1994, 6, 1642.Google Scholar
5. Nguyen, T. N.; Lee, P. A.; zur Loye, H.-C. Science 1996, 271, 489.Google Scholar
6. Fjellvåg, H.; Gulbrandsen, E.; Aasland, S.; Olsen, A.; Hauback, B.C. J. Solid State Chem. 1996, 124, 190.Google Scholar
7. Kagayama, H.; Yoshima, K.; Kosuge, K.; Mitamura, H.; Goto, T. J. Phys. Soc. Jpn. 1997, 66, 1607.Google Scholar
8. Campá, J.A.; Gutiérrez-Puebla, E.; Monge, M.A.; Rasines, I.; Ruíz-Valero, C. J. Solid State Chem. 1994, 108, 203.Google Scholar
9. Harrison, W.T.A.; Hegwood, S.L.; Jacobson, A.J. J. Chem. Soc., Chem. Commun. 1995, 1953.Google Scholar
10. Battle, P.D.; Blake, G.R.; Darriet, J.; Gore, J.G.; Weill, F.G. J. Mater. Chem. 1997, 7, 1559.Google Scholar
11. Strunk, M.; Müller-Buschbaum, Hk. J. Alloys.Comp. 1994, 209, 189.Google Scholar
12. Dussarrat, C.; Fompeyrine, J.; Darriet, J. Eu. J. Solid State Inorg. Chem. 1995, 32, 3.Google Scholar
13. Campá, J.; Gutierrez-Puebla, E.; Monge, A.; Rasines, I.; Ruíz-Valero, C. J. Solid State Chem. 1996, 126, 27.Google Scholar
14. Layland, R. C.; Claridge, J. B.; Adams, R. D.; zur Loye, H.-C. Z. Anorg. Allg. Chem. 1997, 623, 1131.Google Scholar
15. Reisner, B. A.; Stacy, A. M. J. Am. Chem. Soc. 1998, 120, 9682.Google Scholar
16. Blake, G.R.; Sloan, J.; Vente, J.F.; Battle, P. D. Chem. Mater. 1998, 10, 3536.Google Scholar
17. Battle, P.D.; Blake, G.R.; Darriet, J.; Gore, J.G.; and Weill, F.G. J. Mater. Chem. 1997, 7, 1559.Google Scholar
18. Huvé, M.; Renard, C.; Abraham, F.; Van Tendeloo, G.; Amelinckx, S. J. Solid State Chem. 1998, 135, 1.Google Scholar
19. Boulahya, K.; Parras, M.; González-Calbet, J. M. J Solid State Chem. 1999, 142, 419.Google Scholar
20. Smith, M. D.; zur Loye, H.-C. Chem. Mater. 2000, 12, 2404.Google Scholar
21. Beauchamp, K. M.; Irons, S. H.; Sangrey, T. D.; Smith, M. D.; zur Loye, H.-C. Phys. Rev. B. 2000, 61, 11594.Google Scholar
22. Zakhour-Nakhl, M.; Claridge, J. B.; Darriet, J.; Weill, F.; zur Loye, H.-C.; Perez-Mato, J.-M. J. Am. Chem. Soc. 2000, 122, 1618.Google Scholar
23. Layland, R. C.; zur Loye, H.-C. J. Alloys Comp. 2000, 299, 118.Google Scholar
24. Layland, R. C.; Kirkland, S. L.; zur Loye, H.-C. J. Solid State Chem. 1998, 139, 79.Google Scholar
25. Smith, M. D.; zur Loye, H.-C. Chem. Mater. 1999, 11, 2984.Google Scholar
26. Darriet, J.; Subramanian, M. A. J. Mater. Chem. 1995, 5, 54.Google Scholar
27. Perez-Mato, J. M.; Zakhour-Nakhl, M.; Weill, F.; Darriet, J. J. Mater Chem. 1999, 9, 2795.Google Scholar
28. Evain, M.; Boucher, F.; Gourdon, O.; Petricek, V.; Dusek, M.; Bezdicka, P. Chem. Mater. 1998, 10, 3068.Google Scholar
29. Gourdon, O.; Petricek, V.; Dusek, M.; Bezdicka, P.; Durovic, S.; Gyepesova, D.; Evain, M. Acta Cryst. 1999, B55, 841 Google Scholar
30. Claridge, J. B.; Layland, R. C.; Henley, W. H.; zur Loye, H.-C. Chem. Mater. 1999, 11, 1376.Google Scholar
31. Henley, W. H.; Claridge, J. B.; zur Loye, H.-C. J. Cryst. Growth 1999, 204, 122.Google Scholar
32. zur Loye, H.-C.; Layland, R. C.; Smith, M. D.; Claridge, J. B. J. Cryst. Growth 2000, 211, 452.Google Scholar
33. Van Smaalen, S. Phys. Rev. B 1991, 43, 11330.Google Scholar
34. Janner, A.; Janssen, T. Acta Crystallogr. A 1980, 36, 399.Google Scholar
35. Janner, A.; Janssen, T. Acta Crystallogr. A 1980, 36, 408.Google Scholar
36. Perez-Mato, J. M.; Madariaga, G.; Zuniga, F. J.; Garcia Arribas, A. Acta Crystallogr. A 1987, 43, 216.Google Scholar
37. Van Smaalen, S. Crystallogr. Rev. 1995, 4, 79.Google Scholar
38. Dusek, M.; Petricek, V.; Wunschel, M.; Dinnebier, R.E.; van Smaaleen, S. J. Appl. Cryst., Submitted.Google Scholar
39. zur Loye, H.-C.; Stitzer, K.E.; Smith, M.D.; El Abed, A.; Darriet, J. Chem Mater., Submitted.Google Scholar