Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-01T16:49:13.422Z Has data issue: false hasContentIssue false

Structure and Phase Transitions in Partially Confined Smectic Liquid Crystals

Published online by Cambridge University Press:  10 February 2011

L. J. Martinez-Miranda
Affiliation:
Dept. of Materials and Nuclear Eng., University of Maryland, College Park, MD 20742–2115, [email protected] Dept. of Physics and Liquid Crystal Institute, Kent State University, Kent, OH 44242–0001
Yushan Shi
Affiliation:
Dept. of Physics and Liquid Crystal Institute, Kent State University, Kent, OH 44242–0001
Satyendra Kumar
Affiliation:
Dept. of Physics and Liquid Crystal Institute, Kent State University, Kent, OH 44242–0001
Get access

Abstract

We present the results of an X-ray scattering study on partially confined smectic-A (layered) LC films. This partial confinement is achieved by placing the LC material inside the open grooves of a glass grating. Samples prepared in this manner are confined in the direction perpendicular to the gratings. Samples in which the LC is contained entirely inside the grooves develop an induced molecular tilt, which results in a compression of the smectic layers. The molecular tilt varies as the amount of the LC material increases, eventually forming a thin overlayer film above the gratings. As the thickness varies, a second region develops in the films. The layer spacing in this region is close to the bulk layer spacing. This structural evolution is coupled to a variation in the nematic-to-smectic-A phase transition temperature of the samples from the bulk. In addition, the nature of the phase transition is driven first order. The effects of partial confinement on a sm-C* LC film is discussed briefly.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Smela, E. and Martínez-Miranda, L.J., J. Appl. Phys., 73, 32993304 (1993).Google Scholar
2. Smela, E. and Martínez-Miranda, L. J., Lig. Cryst., 14, 18771883, 1993.Google Scholar
3. Smela, E. and Martínez-Miranda, L. J., J. Appl. Phys., 77, 1923 (1995).Google Scholar
4. Smela, E. and Martínez-Miranda, L. J., J. Appl. Phys., 77, 1930 (1995).Google Scholar
5. Martínez-Miranda, L. J., Smela, E. and Liu, H., SPIE Vol. 2175. 1994.Google Scholar
6. Mang, J. T., Sakamoto, K. and Kumar, S., Mol. Cryst. Liq. Cryst., 223, 133 (1992).Google Scholar
7. Crawford, G. P., Allender, D. W. and Doane, J. W., Phys. Rev. A, 45, 8693 (1992).Google Scholar
8. Crawford, G. P., Ondris-Crawford, R., Zumer, S. and Doane, J. W., Phys. Rev. Lett. 70, 1838 (1993).Google Scholar
9. Iannacchione, G. S., Mang, J. T., Kumar, S. and Finotello, D., Phys. Rev. Lett., 73, 2708 (1994).Google Scholar
10. Iannacchione, G. S., Strigazzi, A. and Finotello, D., Liq. Cryst., 14, 1153 (1993).Google Scholar
11. Krajl, S., Zumer, S. and Allender, D. W., Phys. Rev. A, 43, 2943 (1991).Google Scholar
12. Drzaic, P., private communication (1995).Google Scholar
13. See, for example, Ocko, B. M., Braslau, A., Pershan, P. S., Als-Nielsen, J. and Deutsch, M., Phys. Rev. Lett, 57, 94 (1986);Google Scholar
Swanson, B. D., Stragier, H., Tweet, D. J. and Sorensen, L. B., Phys. Rev. Lett., 62, 909 (1989).Google Scholar
14. See, for example, Collett, J., Pershan, P. S., Sirota, E. B. and Sorenson, L. B., Phys. Rev. Lett., 52, 356 (1984).Google Scholar
15. Ocko, B. M., Phys. Rev. Lett., 64, 2160 (1990).Google Scholar
16. See, for example, Guyot-Sionnest, P., Hsiung, H. and Shen, Y. R., Phys. Rev. Lett, 57, 2963 (1986);Google Scholar
Hsiung, H. and Shen, Y. R., Phys. Rev. A, 34, 4303 (1987);Google Scholar
Zhuang, X., Marrucci, L. and Shen, Y. R., Phys. Rev. Lett., 73, 1513 (1994).Google Scholar
17. Laurentovich, O. D. and Pergamenshchik, V. M., Phys. Rev. Lett., 73, 979 (1994).Google Scholar
18. Kothekar, N., Allender, D. W., and Hornreich, R. M., Phys. Rev. E, 49, 2150 (1994).Google Scholar
19. Zhuang, X., Marrucci, L. and Shen, Y. R., Phys. Rev. Lett., 73, 1513 (1994).Google Scholar
20. Clark, N. A., Phys. Rev. Lett., 55, 292 (1985).pGoogle Scholar
21. See, for example, Handschy, M. A. and Clark, N. A., Ferroelectrics, 59, 69 (1984).Google Scholar
22. Chandani, A. D. L., Hagiwara, Takashi, Suzuki, Yoshi-ichi, Ouchi, Yuchio, Takezoe, Hideo and Fukuda, Atsuo. Japanese Journal of Applied Physics, 27, L729 (1988).Google Scholar
23. Shi, Y., Cull, B. and Kumar, S., Phys. Rev. Lett., 71, 2773 (1993).Google Scholar
24. Chen, W., Feller, M. B., and Shen, Y. R.. Phys. Rev. Lett. 63, 2665 (1989).Google Scholar
25. Moses, T., Ouchi, Y., Chen, W. and Shen, Y. R., Mol. Cryst. Liq. Cryst. 225 55 (1993).Google Scholar
26. Kralj, S. and Zumer, S, Phys. Rev. E, 541. 1610, (1996).Google Scholar
27. Takanishi, Y., Ouchi, Y., Takezoe, H. and Fukuda, A., Japanese Journal of Applied Physics. 28. L487 (1989).Google Scholar
28. Martínez-Miranda, L. J., Shi, Yushan and Kumar, Satyendra, Molec. Cryst. Liq. Cryst. in press (1996).Google Scholar