Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T07:24:20.875Z Has data issue: false hasContentIssue false

Structure and Performance of Polycrystalline Thin Film Solar Cells

Published online by Cambridge University Press:  15 February 2011

Edward S. Yang*
Affiliation:
Department of Electrical Engineering, Columbia University, New York, NY 10027(U.S.A.)
Get access

Abstract

A review of recent advances in polycrystalline thin film solar cells is presented. A comparison of the fundamental mechanisms and the performance of heterojunction, Schottky barrier, metal-insulator-semiconductor, inversion layer and p-n junction devices is given. The emphasis is placed on devices fabricated by low temperature processes, and the influence of grain boundaries on carrier recombination and transport is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Hovel, H. J., Solar Energy Mater., 2 (1980) 277.CrossRefGoogle Scholar
2 Bucher, E., Appl. Phys., 17(1978) 1.CrossRefGoogle Scholar
3 Feucht, D. L., Proc. l5th Photovoltaic Specialists' Conf. Orlando, FL, 1981, IEEE, New York, 1981, p. 648.Google Scholar
4 Proc. 1st–15th Photovoltaic Specialists' Confs., IEEE New York 1956–1981.Google Scholar
5 Sze, S. M., Physics of Semiconductor Devices, Wiley, New York, 1981.Google Scholar
6 Green, M. A., Solid-State Electron., 24 (1981) 788.CrossRefGoogle Scholar
7 Young, R. T., Wood, R. F., Narayan, J., White, C. W. and Christie, W. H., IEEE Trans. Electron Devices, 27 (1980) 807.Google Scholar
8 Michel, J., Barbier, D. and Laugier, A., 15th IEEE Photovoltaic Specialists' Conf. Rec., IEEE, New York, 1981, p. 1007.Google Scholar
9 Fan, J. C. C., Chapman, R. L., Donnelly, J. P., Turner, G. W. and Bozler, C. D., Appl. Phys. Lett., 34 (1979) 780.Google Scholar
10 Deutch, T. F., Fan, J. C. C., Turner, G. W., Chapman, R. L., Ehrlich, D. J. and Osgood, R. M. Jr., Appl. Phys. Lett., 38 (1981) 144.CrossRefGoogle Scholar
11 Card, H. C., Yang, E. S. and Panayotatos, P., Appl. Phys. Lett., 30 (1977) 643.Google Scholar
12 Wu, C. M. and Yang, E. S., J. Appl. Phys., 51 (1980) 5889.Google Scholar
13 Stirn, R. J. and Yeh, Y. C. M., Appl. Phys. Lett., 27 (1975) 95.Google Scholar
14 Card, H. C. and Yang, E. S., Appl. Phys. Lett., 29 (1976) 51.Google Scholar
15 Anderson, W. A., Delahoy, A. E., Kim, J. K., Hyland, S. H. and Dey, S. K., Appl. Phys. Lett., 33 (1978) 588.CrossRefGoogle Scholar
16 Godfrey, R. B. and Green, M. A., Appl. Phys. Lett., 34(1979) 790.CrossRefGoogle Scholar
17 Ghosh, A. K., Fishman, C. and Feng, T., J. Appl. Phys., 49 (1978) 3490.Google Scholar
18 Carlson, D. E. et al. , Electrochemical Society Meet., Hollywood, FL, October 1980.Google Scholar
19 Tawada, Y., Dondo, M., Okamoto, H. and Hamakawa, Y., Proc. 15th Photovoltaic Specialists' Conf., Orlando, FL, 1981, IEEE, New York, 1981, p. 245.Google Scholar
20 Refield, D., Final Rep. DOE/ET/23108–8, June 1981 (U.S. Department of Energy, Washington, DC).Google Scholar
21 Panayotatos, P., Yang, E. S. and Hwang, W., Solid-State Electron., 25 (1982) 417.Google Scholar
22 Lu, N. C., Gerzber, L., Lu, C. Y. and Meindl, J. D., IEEE Electron Devices Lett., 2 (1981) 95.CrossRefGoogle Scholar
23 Yang, E. S., Poon, E. K., Wu, C. M., Hwang, W. and Card, H. C., IEEE Trans. Electron Devices, 28 (1981) 1131.Google Scholar
24 Wu, C. M. and Yang, E. S., Appl. Phys. Lett., 40 (1982) 49.Google Scholar
25 Card, H. C. and Yang, E. S., IEEE Trans. Electron Devices, 24 (1977) 397.Google Scholar
26 Seager, C. H. and Pike, G. E., Appl. Phys. Lett., 35 (1979) 709.CrossRefGoogle Scholar
27 Young, R., Lu, M., van der Leeden, E., Jellison, G. Jr., and Chang, Y. K., Proc. 15th Photovoltaic Specialists' Conf., Orlando, FL, 1981, IEEE, New York, 1981, p. 1316.Google Scholar
28 Seager, C. H., Ginley, D. S. and Zook, J. D., Appl. Phys. Lett., 36 (1980) 831.Google Scholar
29 Ginley, D. S., Appl. Phys. Lett., 39 (1981) 624.Google Scholar
30 Fang, T., Ghosh, A., Maruska, H. and Eustace, D., Proc. 15th Photovoltaic Specialists' Conf., Orlando, FL, 1981, IEEE, New York, 1981, p. 1412.Google Scholar
31 Storti, G. M., Proc. 15th Photovoltaic Specialists' Conf, Orlando, FL, 1981, IEEE, New York, 1981, p. 442.Google Scholar
32 Chu, S., Chu, T., Jiang, C., Loh, C., Stokes, E. and Yu, S., Proc. 15th Photovoltaic Specialists' Conf, Orlando, FL, 1981, IEEE, New York, 1981, p. 1310.Google Scholar
33 Fan, J. C. C., Bozler, C. O. and McClelland, R. W., Proc. 15th Photovoltaic Specialists' Conf., Orlando, FL, 1981, IEEE, New York, 1981, p. 666.Google Scholar
34 Wagner, S., Shay, J. L. and Migliorato, P., Appl. Pkys. Lett., 25 (1974) 434.CrossRefGoogle Scholar
35 Kazmerski, L. L., Ireland, P. J., White, F. R. and Cooper, R. B., Proc. 13th Photovoltaic Specialists' Conf., Washington, DC, June 5–8, 1978, IEEE, New York, 1978, p. 185.Google Scholar
36 Mickelsen, R. A. and Chen, W. S., Appl. Phys. Lett., 36 (1980) 372.Google Scholar
37 Fulop, G. F., Betz, J. F., Meyers, P. V. and Doty, M. E., U.S. Patent 4, 261, 802, April 1981.Google Scholar