Hostname: page-component-cc8bf7c57-fxdwj Total loading time: 0 Render date: 2024-12-11T22:09:27.080Z Has data issue: false hasContentIssue false

Structure and Magnetism in the Kagome Antiferromagnet RBaCo4O7

Published online by Cambridge University Press:  26 February 2011

John F. Mitchell
Affiliation:
[email protected], Argonne National Laboratory, Materials Science Division, MSD 223, 9700 S. Cass Avenue, Argonne, IL, 60439, United States, 630-252-5852, 630-252-7777
Hong Zheng
Affiliation:
[email protected], Argonne National Laboratory, Materials Science Division, MSD 223, 9700 S. Cass Ave., Argonne, IL, 60439, United States
Ashfia Huq
Affiliation:
[email protected], Oak Ridge National Laboratory, Spallation Neutron Source, Oak Ridge, TN, 37831, United States
Laurent C. Chapon
Affiliation:
[email protected], Rutherford Laboratory, ISIS Facility, Chilton, Didcot, OX11 0QX, United Kingdom
Paolo G. Radaelli
Affiliation:
[email protected], Rutherford Laboratory, ISIS Facility, Chilton, Didcot, OX11 0QX, United Kingdom
Peter W. Stephens
Affiliation:
[email protected], SUNY Stonybrook, Physics and Astronomy, Stonybrook, NY, 11794, United States
Get access

Abstract

The mixed-valent compound RBaCo4O7 (R=Rare earth, Y), hereafter abbreviated as R-114, is built up of Kagomé sheets of CoO4 tetrahedra, linked in the third dimension by a triangular layer of CoO4 tetrahedra in an analogous fashion to that found in the known geometrically frustrated magnets such as pyrochlores and SrCr9xGa12-9xO19 (SCGO). We have undertaken a study of the structural and magnetic properties of the Y-114 and Yb-114 compound using combined high resolution powder neutron and synchrotron X-ray diffraction. Both compounds undergo a first order trigonal → orthorhombic phase transition that breaks the trigonal symmetry of the structure. We show from Bond Valence Sum arguments that this transition occurs as a response to a markedly underbonded Ba2+ site in the high-temperature phase. The symmetry-lowering transition relieves the geometric frustration of the structure, and a long-range ordered 3-D antiferromagnetic state develops at low temperature. The magnetic structure of the Y compound has been solved and shows a compromise between the well-known 120° structure of the Kagomé net and a collinear antiferromagnet in the third dimension

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ballou, R., Canals, B., Elhajal, M., Lacroix, C. and Wills, A. S., Phys. Stat. Sol. 236, 240 (2003).Google Scholar
2. Greedan, J., J. Mater. Chem. 11, 37 (2001).Google Scholar
3. Harrison, A. J. Phys.: Condens. Matter, 16, S553 (2004).Google Scholar
4. Bychkov, G. L., Barilo, S. N., Shiryaev, S. V., Sheptyakov, D. V., Ustinovich, S. N., Podlesnyak, A., Baran, M., Szymczak, R. and Furrer, A., J. Cryst. Growth 275, e813(2005).Google Scholar
5. Tsipis, E. V., Khalyavin, D. D., Shiryaev, S. V., Redkina, K. S. and Nunez, P., Mater. Chem. Phys. 92, 33 (2005)Google Scholar
6. Tsipis, E. V., Kharon, V. V., Frade, J. R. and Nunez, P., J. Solid State. Electrochem. 9, 547 (2005).Google Scholar
7. Valldor, M.,Solid State Sciences 6, 251 (2004).Google Scholar
8. Valldor, M., J. Phys.: Condens. Matter 16, 9209 (2004).Google Scholar
9. Valldor, M. and Andersson, M., Solid State Sciences 4, 923 (2002).Google Scholar
10. Rodriguez-Carvajal, J., FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis, Proceeding of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, 1990, p. 127 Google Scholar
11. Larson, A. C. and Von Dreele, R. B., General Structure Analysis System (GSAS) Los Alamos National Laboratory Report LAUR 86–748, 2000.Google Scholar
12. Chapon, L. C., Radaelli, P.G., Zheng, H., and Mitchell, J.F. Phys. Rev B 74, 172401 (2006).Google Scholar
13. Huq, A., Mitchell, J.F., Zheng, H., Chapon, L.C., Radaelli, P.G., Knight, K.S., and Stephens, P.W. J. Solid Sate Chem. 179,1125 (2006).Google Scholar
14. Maignan, A., Caignaert, V., Pelloquin, D., Hébert, S., Pralong, V., Hejtmanek, J., and Khomskii, D. Phys. Rev. B 74, 165110 (2006).Google Scholar
15. Caignaert, V., Maignan, A., Pralong, V., Hebert, S., and Pelloquin, D., Solid State Sciences 8, 1160 (2006)Google Scholar
16. Soda, M., Yasui, Y., Moyoshi, T., Sato, M., Igawa, N., and Kazuhisa, Kakurai J. Phys. Soc.Jpn. 75, 054707 (2006).Google Scholar
17. Shender, E.F., Cherepanov, V.B., Holdsworth, P.C., and Berlinsky, A.J. Phys. Rev. Lett. 70, 3812 (1993).Google Scholar