Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T18:05:25.234Z Has data issue: false hasContentIssue false

Structure and Magnetic Properties of Fe-N Thin Films Grown by ECR Deposition

Published online by Cambridge University Press:  10 February 2011

Š émeth
Affiliation:
IMEC, NMC/NM, Kapeldreef 75, B-3001 Leuven, Belgium
H. Akinaga
Affiliation:
JRCAT: NAIR, 1–1-4 Higashi, Tsukuba, Ibaraki 305–8562, Japan
H. Boeve
Affiliation:
IMEC, NMC/NM, Kapeldreef 75, B-3001 Leuven, Belgium
H. Bender
Affiliation:
IMEC, NMC/NM, Kapeldreef 75, B-3001 Leuven, Belgium
J. de Boeck
Affiliation:
IMEC, NMC/NM, Kapeldreef 75, B-3001 Leuven, Belgium
G. Borghs
Affiliation:
IMEC, NMC/NM, Kapeldreef 75, B-3001 Leuven, Belgium
Get access

Abstract

The growth of FexNy thin films on GaAs, In0.2Ga0.8As, and SiO2/Si substrates using an ultra high-vacuum (UHV) deposition chamber equipped with electron cyclotron resonance (ECR) microwave plasma source is presented. The structural properties of the deposited films have been measured using various techniques as x-ray diffraction (XRD), Auger electron spectroscopy (AES), and transmission electron microscopy (TEM). The results of XRD measurements show that the films consist of a combination of α-Fe, α'-Fe, y-Fe4N, and α”- Fe16N2 phases. The depth profiles, calculated from the Auger peak intensities, show a uniform nitrogen concentration through the films. The TEM reveals a columnar structure of these films. The properties of the different Fe-N layers have been exploited in the fabrication of Fe(N) / FexNy / Fe trilayer structures, where Fe(N) means a slightly nitrogen doped Fe film. The magneto-transport properties of this trilayer structure grown on In0.2Ga0.8As substrates are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jack, K. H., Proc R. Soc. London, Ser. A 208, p. 200 (1951)Google Scholar
2. Kim, T. K. and Takahashi, M., Appl. Phys. Lett. 20, p. 492 (1972).Google Scholar
3. Nakajima, K. and Okamoto, S., Appl. Phys. Lett. 56, p. 92 (1990).Google Scholar
4. Komuro, M., Kozono, Y., Hanazozo, M., and Sugita, Y., J. Appl. Phys. 67, p. 5126 (1989).Google Scholar
5. Sugita, Y., Mitsuoka, K., Komuro, M., Hoshiya, H., Kozono, Y., and Hanazono, J. Appl. Phys. 70, p. 5977 (1991).Google Scholar
6. Russak, M. A., Jahnes, C. V., Klokholm, E., Lee, J. W., Re, M. E., and Webb, B. C., J. Appl. Phys. 70, p. 6427 (1991).Google Scholar
7. Takahashi, M., Shoji, H., Takahashi, H., Wakiyama, T., Kinoshita, M., and Ohta, W., IEEE Trans. Magn. 29, p. 3040 (1993).Google Scholar
8. Deneffe, K., Mieghem, P. Van, Brijs, B., Vorst, W. Van Der, Mertens, R., and Borghs, G., Journal of the Less Common Metals, 164&165, p. 307, (1990).Google Scholar
9. Vaudo, R. P., Cook, J. W. Jr., and Schetzina, J. F., J. Vac. Sci. Technol. B 12(2), p. 1232, (1994).Google Scholar