Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:59:13.863Z Has data issue: false hasContentIssue false

Structural Quality and Electrical Behavior of Epitaxial High-k Y2O3 / Si(001)

Published online by Cambridge University Press:  11 February 2011

G. Vellianitis
Affiliation:
MBE Laboratory, Institute of Materials Science, NCSR “Demokritos”, Athens, GREECE
G. Apostolopoulos
Affiliation:
MBE Laboratory, Institute of Materials Science, NCSR “Demokritos”, Athens, GREECE
A. Dimoulas
Affiliation:
MBE Laboratory, Institute of Materials Science, NCSR “Demokritos”, Athens, GREECE
K. Argyropoulos
Affiliation:
MBE Laboratory, Institute of Materials Science, NCSR “Demokritos”, Athens, GREECE
B. Mereu
Affiliation:
Max Planck Institute for Microstructural Physics, Halle, GERMANY
R. Scholz
Affiliation:
Max Planck Institute for Microstructural Physics, Halle, GERMANY
M. Alexe
Affiliation:
Max Planck Institute for Microstructural Physics, Halle, GERMANY
J. C. Hooker
Affiliation:
Philips Research Leuven, Leuven, BELGIUM.
Get access

Abstract

Y2O3 thin films were grown directly on Si (001) by MBE and annealed in-situ under UHV at various annealing temperatures. The samples were investigated in-situ by RHEED and ex-situ by HRTEM. A 7 to 15 Å thick non-uniform interfacial amorphous layer is observed in the as-grown sample. After annealing at 490°C under UHV for 30 minutes the amorphous layer is reduced and a sharp Y2O3/Si interface is obtained. At higher annealing temperatures, YSi2 islands start to form at the Y2O3/Si interface. I-V measurements performed on generic MIS structures show that the annealed samples exhibit higher leakage current density than the as-grown sample, due to reduction of the wide band gap interfacial layer. Leakage current densities in annealed samples remain below 1A/cm2, which is acceptable for future high-κ transistor fabrication.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. International Technology Roadmap for Semiconductors, 2001 edition,Google Scholar
2. Wilk, G.W., Wallace, R.M., Anthony, J.M., J. Appl. Phys. 90, 5243 (2001)Google Scholar
3. Niu, D., Ashcraft, R.W., Chen, Z., Stemmer, S., Parsons, G.N., Appl. Phys. Lett. 81, 676 (2002)Google Scholar
4. Niu, D., Ashcraft, R.W., Parsons, G.N., Appl. Phys. Lett. 80, 3575 (2002)Google Scholar
5. Stemmer, S., Klenov, D.O., Chen, Z., Niu, D., Ashcraft, R. W., Parsons, G. N., Appl. Phys. Lett. 81, 712 (2002).Google Scholar
6. Dimoulas, A., Travlos, A., Vellianitis, G., Boukos, N. and Argyropoulos, K., J. Appl. Phys. 90, 4224 (2001)Google Scholar
7. Dimoulas, A., Vellianitis, G., Travlos, A., Ioannou-Sougleridis, V., Nassiopoulou, A. G., J. Appl. Phys. 92, 426 (2002).Google Scholar
8. Apostolopoulos, G., Vellianitis, G., Dimoulas, A., Alexe, M. and Scholz, R., Fanciulli, M., Dekadjevi, D. T., Wiemer, C., Appl. Phys. Lett., 81, 19 (2002)Google Scholar
9. Shutthanandan, V., Thevuthasan, S., Liang, Y., Adams, E. M., Yu, Z., Droopad, R., Appl. Phys. Lett., 80, 10, 1803 (2002)Google Scholar
10. Ramdani, J., Droopad, R., Yu, Z., Curless, J.A., Overgaard, C.D., Finder, J., Eisenbeiser, K., Hallmark, J.A., Ooms, W.J., Kaushik, V., Alluri, P., Pietambaram, S., Appl. Surf. Sci., 159–160 (2000) 127133 Google Scholar
11. Travlos, A., Boukos, N., Vellianitis, G., Apostolopoulos, G., Dimoulas, A., unpublishedGoogle Scholar
12. Hubbard, K.J. and Schlom, D.G., J. Mater. Research 11, 2757 (1996)Google Scholar
13. Ioannou-Sougleridis, V., Vellianitis, G., Dimoulas, A., accepted, J. Appl. Phys. (2003).Google Scholar
14. Yu, Z., Ramdani, J., Curless, J.A., Overgaard, C.D., Droopad, J.M., Finder, J.M., Droopad, R., Eisenbeiser, K.W., Hallmark, J.A., Ooms, W.J., Kaushik, V.S., J. Vac. Sci. Technol. B 18, 2139 (2000)Google Scholar