Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T12:35:28.450Z Has data issue: false hasContentIssue false

Structural Properties of Conjugated Molecular Crystals Under high Pressure

Published online by Cambridge University Press:  21 March 2011

Georg Heimel
Affiliation:
Inst. for Solid State physics, Graz University of Technology, A-8010 Graz, Austria
Egbert Zojer
Affiliation:
Inst. for Solid State physics, Graz University of Technology, A-8010 Graz, Austria
Roland Resel
Affiliation:
Inst. for Solid State physics, Graz University of Technology, A-8010 Graz, Austria
Peter Pushning
Affiliation:
Inst. for Theoretical physics, University of Graz, A-8010 Graz, Austria
Kerstin Weinmeier
Affiliation:
Inst. for Theoretical physics, University of Graz, A-8010 Graz, Austria
Claudia Ambrosch-Draxl
Affiliation:
Inst. for Theoretical physics, University of Graz, A-8010 Graz, Austria
Get access

Abstract

Electro-active organic materials based on conjugated molecules, showing promising optical features in the UV/Vis region combined with high electron mobility and fluorescence quantum yield, are of great interest for both, scientific and commercial use. Since the electro-optical properties of these materials are critically influenced by their the crystal and molecular structures, the goal of our work is to study the nature of the intermolecular interactions by applying hydrostatic pressure. X-Ray powder diffraction experimets were carried out to determine the lattice parameters. These experimental data then served as an input for an optimization of the atomic positions and molecular orientation based on total -energy and atomic-force computations within density functional theory.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schö, J.H., Kloc, Ch, Bucher, E., and Batlogg, B., Nature 403, 408 (2000)Google Scholar
2. Schö, J.H., Berg, S., Kloc, Ch, and Batlogg, B., Science 287, 1022 (2000)Google Scholar
3. Schö, J.H., Kloc, Ch, and Dodobalapur, A., Batlogg, B., Science 289, 599 (2000)Google Scholar
4. Yang, S., Graupner, W., Guha, S., Pusching, P., Martin, C., Chandrasekhar, H.R., Chandrasekhar, M., Leising, G., Ambrosch-Draxl, C., Phys. Rev. Lett. 85, 2388 (2000).Google Scholar
5. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (2000).Google Scholar
6. Kohn, W. and Sham, L.J., Phys. Rev. 140, A1133 (1965).Google Scholar
7. Mason, R. Acta Cryst. 17, 547 (1964).Google Scholar
8. Rietveld, H.M. Maslen, E.N., and Clews, C.J.B., Acta Cryst. 26, 693 (1970).Google Scholar
9. Blaha, P. Schwarz, K., and Luitz, J., WIEN97, A Full Potential Linerarized Augmented Plane Wave Package for calculating Crystal Properties, ed. by Schwarz, Karlherinz, Techn. Universität Wien, Austia, (1999) ISBN 3-9501031-0-4.Google Scholar
10. Ceperly, D.M., Alder, B.J., Phys. Rev. 45, 566 (1980).Google Scholar
11. Perdew, J.P., Burke, S., Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
12. Weinmeier, K., Puschning, P., Ambrosch-Draxl, C., Zojer, E., and Resel, R., presented at this conference.Google Scholar
13. Bhadra, T.C., Indian J. Phjysics 49, 746 (1975)Google Scholar
14. Elnahwy, S., Hamamsy, M.El, Damask, A.C., Cox, D.E, Daniels, W.B., J. Chem. Phys. 68, 1161 (1978)Google Scholar
15. Pufall, R., Kalus, J., Acta Cryst. A 44, 901 (1988)Google Scholar
16. Léger, J.M., Aloualiti, H., Sol. Stat. Commun. 79, 901 (1991).Google Scholar
17. Puschning, P., Ambrosch-Draxl, C., Heimel, G., Zojer, E., Resel, R., Leising, G., Kriechbaum, M., and Graupner, W., Synth. Met. 116, 327 (2001).Google Scholar