Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-20T01:36:14.766Z Has data issue: false hasContentIssue false

Structural Processes in Gold-Based Metallization During the Formation of Ohmic Contacts to GaSb

Published online by Cambridge University Press:  15 February 2011

A. Piotrowska
Affiliation:
Institute of Electron Technology, Warszawa, Poland, [email protected]
E. Kańifiska
Affiliation:
Institute of Electron Technology, Warszawa, Poland, [email protected]
M. Guziewicz
Affiliation:
Institute of Electron Technology, Warszawa, Poland, [email protected]
E. Mizera
Affiliation:
Institute of Physics, PAS, Warszawa, Poland
E. Dynowska
Affiliation:
Institute of Physics, PAS, Warszawa, Poland
X. W. Lin
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, CA
S. Rouvimov
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, CA
Z. Liliental Weber
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, CA
S. Kwiatkowski
Affiliation:
Institute of Nuclear Studies Warszawa, Poland
Get access

Abstract

Annealing behavior of Au, AuZn, and AuSb metallization on GaSb have been investigated by the combined use of RBS, XRD, TEM, and I-V characterization. The results give evidence that the thermally activated contact reaction strongly depends on the particular elements incorporated in the Au layer. Pure Au reacts with GaSb at 100°C. The addition of Zn to Au metallization increases the thermal stability of the metallization/semiconductor system to 200°C. Antimony, forming with gold the AuSb2 phase in metallization, provides the most stable ohmic contact system.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Heinz, C.H., Int. J. Electron. 54, 247 (1983).Google Scholar
2. Oliveira, J.B.B., Olivieri, C.A., Galzerani, J.C., Pasa, A.A., and de Prince, F.C., J. Appl. Phys. 66, 5484 (1989).Google Scholar
3. Villemain, E., Gaillard, S., Rolland, M., and Joullie, A., Materials Science and Engineering B20, 162(1993).Google Scholar
4. Milnes, A.G. and Ye, M., and Stam, M., Solid-State Electron. 37, 37 (1994).Google Scholar
5. Piotrowska, A., Kańifiska, E., Piotrowski, T., Kasjaniuk, S., Guziewicz, M., Gierlotka, S., Lin, X.W., Liliental-Weber, Z., Washburn, J., and Kwiatkowski, S., Acta Physica Polonica A 87, 419 (1995).Google Scholar