Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T12:05:21.521Z Has data issue: false hasContentIssue false

Structural Investigation of Alumina Thin Films Deposited by Chemical Vapor Deposition

Published online by Cambridge University Press:  11 February 2011

Naoufal Bahlawane*
Affiliation:
Physikalische Chemie I, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
Sabine Blittersdorf
Affiliation:
Physikalische Chemie I, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
Katharina Kohse-Höinghaus
Affiliation:
Physikalische Chemie I, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
Burak Atakan
Affiliation:
Thermodynamik, Institut für Verbrennung und Gasdynamik, Gerhard-Mercator-Universität, Duisburg, D-47048 Duisburg, Germany
Jürgen Müller
Affiliation:
Lehrstuhl für Werkstoffchemie, RWTH Aachen, D-5256 Aachen, Germany
Get access

Abstract

The present study concerns the deposition of α–Al2O3 for diffusion barrier applications on superalloy substrates. The growth of α–Al2O3 has been achieved by chemical vapor deposition (CVD) using an AlCl3/CO2/H2 gas mixture at 1080 °C. Among several growth-controlling parameters with potential importance for the whisker growth process, the reactor pressure during deposition seems to be highly influential on the resulting film structure. Deposited films at low pressure presented solely a fine whisker structure. This non-closed structure is not suitable as diffusion barrier; however, the observed high porosity makes the deposit a potential candidate as a catalysis support. An increase of the deposition pressure led to a competitive growth of whiskers and grains. A suitable microstructure was attained at relatively high pressure (100 mbar) where the surface was fully covered by 2 μm large alumina crystals that formed a closed structure. Further increase of the pressure led to an irregular and rough surface microstructure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Eliaz, N., Shemesh, G., and Latanision, R. M., Eng. Failure Anal. 9, 31 (2002).Google Scholar
2. Goward, G. W., Surf. Coat. Technol. 108–109, 73 (1998).Google Scholar
3. Murphy, K. S., More, K. L., and Lance, M. J., Surf. Coat. Technol. 146–147, 152 (2001).Google Scholar
4. Spitsberg, I. T., Darolia, R., Jackson, M. R., Zhao, J.-C., and Schaeffer, J. C., U.S. Patent No. 6 306 524 (October 23, 2001).Google Scholar
5. Fernihough, J., Bogli, A., and Tonnes, C., U.S. Patent No. 6 440 238 (August 27, 2002).Google Scholar
6. O'Hara, K. S., Walston, W. S., and Schaeffer, J. C., U. S. Patent No. 6 447 932 (September 10, 2002).Google Scholar
7. Yu, Z. and Narita, T., Oxid. Met. 56, 467 (2001).Google Scholar
8. Leverant, G. R., U. S. Patent No. 5 556 713 (September 17, 1996).Google Scholar
9. Leverant, G. R., Arps, J., Campbell, J., and Page, R., U. S. Patent No. 6 143 141 (November 7, 2000).Google Scholar
10. Cybulsky, M. and Gibbons, T. B., U. S. Patent No. 6 168 875 (January 2, 2001).Google Scholar
11. Chen, K. N., Ngiam, S. T., and Hu, G., U. S. Patent No. 6 228 510 (May 8, 2001).Google Scholar
12. Knotek, O., Lugscheider, E., Löffler, F., and Beele, W., Surf. Coat. Technol. 68, 22 (1994).Google Scholar
13. Reichert, K., Surf. Eng. 15, 163 (1999).Google Scholar
14. Cremer, R., Witthaut, M., Reichert, K., Schierling, M., and Neuschütz, D., Surf. Coat. Technol. 108–109, 48 (1998).Google Scholar
15. Cremer, R., Witthaut, M., Reichert, K., and Neuschütz, D., Fresenius J. Anal. Chem. 365, 158 (1999).Google Scholar
16. Eritt, U., von Hayn, G., Lugscheider, E., Müller, J., and Neuschütz, D., Mat.-wiss. u. Werkstofftech. 33, 45 (2002).Google Scholar
17. Müller, J., Schierling, M., Zimmermann, E., and Neuschütz, D., Surf. Coat. Technol. 120–121, 16 (1999).Google Scholar
18. Catoire, L. and Swihart, M. T., J. Electrochem. Soc. 149, C261 (2002).Google Scholar
19. Nitodas, S. F. and Sotirchos, S. V., J. Electrochem. Soc. 149, C130 (2002).Google Scholar
20. Ruppi, S., J. Phys. IV 11, Pr3847 (2001).Google Scholar
21. Carlsson, M., Alberius-Henning, P., and Johnsson, M., J. Mater. Sci. 37, 2917 (2002).Google Scholar
22. Yuan, Y. and Pan, J., J. Mater. Sci. 33, 5773 (1998).Google Scholar
23. Ahn, H. S. and Choi, D. J., Surf. Coat. Technol. 154, 276 (2002).Google Scholar