Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T07:46:55.223Z Has data issue: false hasContentIssue false

Structural Evolution of Simplified Nuclear Glasses Under β-Irradiation: A Raman Spectroscopy Study

Published online by Cambridge University Press:  15 February 2011

B. Boizot
Affiliation:
CEA/DSM/DRECAM, Service de Recherche sur les Surfaces et lIrradiation de la Matiére, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France, [email protected]
G. Petite
Affiliation:
CEA/DSM/DRECAM, Service de Recherche sur les Surfaces et lIrradiation de la Matiére, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
D. Ghaleb
Affiliation:
CEA/DCC/DRVV, Service de Confinement des Déchets, CEA Valrho- Marcoule, BP 171, 30207 Bagnols-sur-Céze Cedex, France
B. Reynard
Affiliation:
Laboratoire de Sciences de‘a Terre, ENS Lyon, 46 allée d‘Italie 69634 Lyon Cedex 7, France
G. Calas
Affiliation:
Laboratoire de Minéralogie - Cristallographie, Universités Paris VI et VII et Institut de Physique du Globe de Paris, UMR CNRS 7590, 4 Place Jussieu, 75252 Paris Cedex 05, France
Get access

Abstract

The ageing processes of simplified nuclear glasses under β-irradiation have been investigated on zirconium-bearing aluminoborosilicate glasses by micro Raman spectroscopy. No dose rate effect has been detected between 2.103 and 2.104 Gy/s for a 3.107 Gy integrated β dose. Important structural differences appear between the volume and the surface, with an increase of the polymerisation and a better defined danburite-like ring structure in the bulk relative to the surface. Molecular 02 is created during glass ageing, mostly close to the sample surface. Both processes indicate an important reorganisation of the glassy matrix during β-irradiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Weber, W.J., Ewing, R.C., Angell, C.A., Arnold, G.W., Cormack, A.N., Delaye, J.M., Griscom, D.L., Hobbs, L.W., Navrotsky, A., Price, D.L., Stoneham, A.M. andWeinberg, M.C., J. Mat. Res. 12 (8), 1946 (1997).Google Scholar
[2] Boizot, B., Petite, G., Ghaleb, D. and Calas, G., Nucl. Instr. and Meth. B 141, 580 (1998).Google Scholar
[3] Boizot, B., Petite, G., Ghaleb, D., Reynard, B. and Calas, G., (1998), accepted in J. NonCryst Solids.Google Scholar
[4] Delaye, J.M. and Ghaleb, D., J. NonCryst. Solids 195, 239 (1996).Google Scholar
[5] McMillan, P. F., Am. Mineral. 69, 622 (1984).Google Scholar
[6] Bunker, B.C., Tallant, D.R., Kirkpatrick, R.J. andTurner, G.L., Phys. Chem. Glassses 31, 30 (1990).Google Scholar
[7] Sharma, S.K., Cooney, T.F., Wang, Z. and van der Laan, S., J. Raman Spectrosc. 28, 697 (1997).Google Scholar
[8] Konijnendijk, W.L. and Stevels, JM., J. NonCryst. Solids 20, 193 (1976).Google Scholar
[9] McMillan, P. F., Am. Mineral. 69, 645 (1984).Google Scholar
[10] Wong, J., J. NonCryst. Solids 20, 83 (1976).Google Scholar
[11] Meera, B.N., Sood, A.K., Chandrabhas, N. and Ramakrishna, J., J. NonCryst. Solids 126, 224 (1990).Google Scholar
[12] DeNatale, J.F. andHowitt, D.G., Nucl. Instr. and Meth. B 1, 489 (1984).Google Scholar
[13] Sato, S., Furuya, H., Asakura, K., Ohta, K. and Tamai, T., Nucl. Instr. and Meth. B 1, 534 (1984).Google Scholar
[14] Champagnon, B., Panczer, G., Chazallon, B., Arnaud, L., Duval, P. and Lipenkov, V., J. Raman Spectrosc. 28, 711 (1997).Google Scholar
[15] Nakahara, J., Shigesato, Y., Higashi, A., Hondoh, T. andLangway, C.C., J. Philos. Mag. B 57, 421 (1988).Google Scholar