Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T01:51:24.112Z Has data issue: false hasContentIssue false

Structural Dynamics of Polycrystals under Shock Compression Observed via Nanosecond Time-resolved X-ray Diffraction

Published online by Cambridge University Press:  18 March 2013

Kazutaka G. Nakamura
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, R3-10, 4259 Nagatsuta, Yokohama 226-8503, Japan
Jianbo Hu
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, R3-10, 4259 Nagatsuta, Yokohama 226-8503, Japan
Kouhei Ichiyanagi
Affiliation:
Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8562, Japan
Nobuaki Kawai
Affiliation:
Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Yoshinodai 3-1-1, Sagamihara 252-5210, Japan
Shin-ichi Adachi
Affiliation:
Photon Factory, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan
Get access

Abstract

Dynamics of structural phase transition in polycrystalline samples (tetragonal stabilized zirconia and bismuth) under laser-shock compression has been studied using nanosecond time-resolved X-ray diffraction technique based on synchrotron radiation. Tetragonal zirconia shows the structural phase transition to the monoclinic phase within 20 ns during shock compression without any intermediate and reverts back to the tetragonal phase during pressure release. Bismuth shows more complex phase transition dynamics. The Bi-I phase, which is the stable phase at ambient pressure and temperature, transfers to Bi-V phase within 4 ns under shock compression and gradually reverts back following the path of Bi-V →Bi-III → Bi-II → Bi-I within 30 ns during pressure release.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ichiyanagi, K., Adachi, S., Nozawa, S., Hironaka, Y., Nakamura, K. G., Sato, T., Tomita, A., and Koshihara, S., Appl. Phys. Lett., 91, 231918 (2007).CrossRefGoogle Scholar
Nozawa, S., Sato, T., Chollet, M., Collet, E., Cailleau, H., Yamamoto, S., Tsuchiya, K., Shioya, T., Sasaki, H., Mori, T., Ichiyanagi, K., Sawa, H., Kawata, H., and Koshihara, S., J. Synch. Rad., 14, 313 (2007).CrossRefGoogle Scholar
Devaux, D., Fabbro, R., Tollier, L., and Bartnicki, E., J. Appl. Phys., 74, 2268 (1993).CrossRefGoogle Scholar
Hu, J., Ichiyanagi, K., Takahashi, H., Koguchi, H., Akasaka, T., Kawai, N., Nozawa, S., Sato, T., Sasaki, Y., Adachi, S., and Nakamura, K. G., J. Appl. Phys., 111, 053526 (2012).CrossRefGoogle Scholar
Ichiyanagi, K., Sato, T., Nozawa, S., Kim, K. H., Lee, J. H., Choi, J., Tomita, A., Ichikawa, H., Adachi, S., Ihee, H., and Koshihara, S., J. Synch. Rad., 16, 391 (2009).CrossRefGoogle Scholar
McMahon, M. I., Degtyareva, O., and Nelmes, R. J., Phys. Rev. Lett. 85, 4896 (2000).CrossRefGoogle Scholar