Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T21:01:15.717Z Has data issue: false hasContentIssue false

Structural Distinctions Between Biogenic and Geological Aragonite

Published online by Cambridge University Press:  01 February 2011

Boaz Pokroy
Affiliation:
Department of Materials Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
John P. Quintana
Affiliation:
DND-CAT Research Center, Northwestern University, APS/ANL Sector 5, Building 432A, 9700 South Cass Avenue, Argonne, IL 60439-4857, U.S.A.
Emil Zolotoyabko
Affiliation:
Department of Materials Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
Get access

Abstract

Energy-variable synchrotron x-ray diffraction was applied to probe local structure in different kinds of aragonitic seashells with spatial resolution. All investigated specimens revealed lattice distortions of biogenic aragonite with respect to the geological mineral. The obtained data are analyzed in terms of residual strains induced by intercalating organic macromolecules.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lowenstam, H. A. and Weiner, S., On Biomineralization (Oxford University Press, New York, 1989).Google Scholar
2. Mann, S., Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry (Oxford University Press, Oxford, 2001).Google Scholar
3. Weiner, S. and Addadi, L., J. Mater. Chem. 7, 689 (1997).Google Scholar
4. Kamat, S., Su, X., Ballarini, R. and Heuer, A. H., Nature 405, 1036 (2000).Google Scholar
5. Pokroy, B. and Zolotoyabko, E., J. Materials Chemistry, 13, 682 (2003).Google Scholar
6. DiMasi, E. and Sarikaya, M, J. Mater. Res. 19, 1471 (2004).Google Scholar
7. Berman, A., Addadi, L. and Weiner, S., Nature 331, 546 (1988).Google Scholar
8. Berman, A., Hanson, J., Leiserowitz, L., Koetzle, T. F., Weiner, S. and Addadi, L., Science 259, 776 (1993).Google Scholar
9. Pokroy, B., Quintana, J. P., Caspi, E. N., Berner, A., and Zolotoyabko, E., Nature Materials 3, 900 (2004).Google Scholar
10. Zolotoyabko, E. and Quintana, J. P., J. Appl. Cryst. 35, 594 (2002).Google Scholar
11. Zolotoyabko, E. and Quintana, J. P., Nuclear Instr. & Meth. Phys. Res. B 200, 382 (2003).Google Scholar
12. Zolotoyabko, E., Pokroy, B. and Quintana, J. P., J. Synchrotron Rad. 11, 309 (2004).Google Scholar
13. Caspi, E. N., Pokroy, B., Lee, P. L., Quintana, J. P. and Zolotoyabko, E., Acta Cryst. B, 61, 129 (2005).Google Scholar
14. Zolotoyabko, E. and Quintana, J. P., Rev. Sci. Instr. 73, 1663 (2002).Google Scholar