Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T07:27:35.228Z Has data issue: false hasContentIssue false

Structural Defects in Mg-doped GaN and AlGaN grown by MOCVD

Published online by Cambridge University Press:  11 February 2011

S. Tomiya
Affiliation:
Material Analysis Dept. Technical Solution Center, Sony Corporation
S. Goto
Affiliation:
Development Center, Sony Shiroishi Semiconductor, Inc.
M. Takeya
Affiliation:
Development Center, Sony Shiroishi Semiconductor, Inc.
M. Ikeda
Affiliation:
Development Center, Sony Shiroishi Semiconductor, Inc.
Get access

Abstract

We have investigated the structural defects formed in Mg-doped GaN and AlGaN epitaxial layers grown by metal organic chemical vapor deposition. These defects have an inverse pyramidal shape and appear when the Mg concentration [Mg] is higher than ∼4×1019/cm3. The density of the defects increases as [Mg] increases, but the size of the defects becomes smaller as [Mg] increases. The density of the defects also has a strong correlation with the hydrogen concentration in the epitaxial layers. Transmission electron microscope analysis reveals that the defects have an inversion operation to the matrix and that their boundaries are Mg-rich. We also propose a model for defect formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tojyo, T., Asano, T., Takeya, M., Hino, T., Kijima, S., Goto, S., Uchida, S. and Ikeda, M., Jpn. J. Appl. Phys. 40, 3206 (2001).Google Scholar
2. Liliental-Weber, Z., Benamara, M., Washburn, J., Grzegory, I., Porowski, S., Lambert, D. J. H., Eiting, C. J., and Dupuis, R. D., Appl. Phys. Lett, 75, 4159 (1999).Google Scholar
3. Vennéguès, P., Benaissa, M., Beaumont, B., Feltin, E., De Miery, P., Dalmasso, S., Leroux, M., and Gilbart, P., Appl. Phys. Lett., 77, 880 (2000).Google Scholar
4. Hansen, M., Chen, L.F., Lim, S.H., DenBaars, S.P., and Speck, J.S.. Appl. Phys. Lett., 80, 2469 (2002)Google Scholar
5. Romano, L. T., Northrup, J. E., and O'Keefe, M. A., Appl. Phys. Lett. 69, 2394 (1996)Google Scholar
6. Ptak, A. J., Myers, T. H., Romano, L.T., Van de Walle, C. G., and Northrup, J. E., Appl. Phys. Lett., 78, 285 (2001).Google Scholar
7. Neugebauer, J. and Van der Walle, C.G., Phys. Rev. Lett., 75, 4452 (1995).Google Scholar
8. Romano, L.T., Northrup, J. E., Ptak, A. J., and Myers, T. H., Appl. Phys. Lett., 77, 2479 (2000).Google Scholar
9. Beaumont, B., Haffouz, S., and Gilbart, P., Appl. Phys. Lett., 72, 921 (1998).Google Scholar