Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T07:46:12.974Z Has data issue: false hasContentIssue false

Structural Defects and Their Relationship to Nucleation of Gan Thin Films

Published online by Cambridge University Press:  15 February 2011

Weida Gian
Affiliation:
Department of Materials Science & Engineering Carnegie Mellon University, Pittsburgh, PA 15213
Marek Skowronski
Affiliation:
Department of Materials Science & Engineering Carnegie Mellon University, Pittsburgh, PA 15213
Greg S. Rohrer
Affiliation:
Department of Materials Science & Engineering Carnegie Mellon University, Pittsburgh, PA 15213
Get access

Abstract

Microstructure and extended defects in α-GaN films grown by organometallic vapor phase epitaxy on sapphire substrates using low temperature AIN (or GaN) buffer layers have been studied using transmission electron microscopy. The types and distribution of extended defects were correlated with the film growth mode and the layer nucleation mechanism which was characterized by scanning force microscopy. The nature of the extended defects was directly related to the initial three-dimensional growth. It was found that inhomogeneous nucleation leads to a grain-like structure in the buffer; the GaN films then have a columnar structure with a high density of straight edge dislocations at grain boundaries which are less likely to be suppressed by common annihilation mechanisms. Layer-by-layer growth proceeds in many individual islands which is evidenced by the observation of hexagonal growth hillocks. Each growth hillock has an open-core screw dislocation at its center which emits monolayer-height spiral steps.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Morkoý, H., Strite, S., Gao, G. B., Lin, M. F., Sverdlov, B. and Burns, M., J. Appl. Phys. 76, 1363 (1994).Google Scholar
[2] Morkoc, H. and Mohammad, S.N., Science, 267, 51 (1995).Google Scholar
[3] Pankove, J. I., Mater. Res. Soc. Symp. Proc. 97, 409 (1987).Google Scholar
[4] Strite, S., Lin, M.E., and Morkog, H., Thin Solid Films, 231, 197 (1993).Google Scholar
[5] Amano, H., Sawaki, N., Akasaki, I., and Toyoda, Y., Appl. Phys. Letters, 48, 353 (1986).Google Scholar
[6] Gotoh, H., Suga, T., Suzuki, H., and Kimata, M., Japan. J. Appl. Phys. 20, L545 (1981).Google Scholar
[7] Paisley, M.J. and Davis, R.F., J. Crystal Growth, 127, 136 (1993).Google Scholar
[8] Lei, T., Moustakas, T.D., Graham, R.J., He, Y. and Berkowitz, S.J., J. Appl. Phys. 71, 4933 (1992).Google Scholar
[9] Basu, S.N., Lei, T. and Moustakas, T.D., J. Mater. Res., 9, 2370 (1994).Google Scholar
[10] Strite, S., Ruan, J., Li, Z., Manning, N., Salvador, A., Chen, H., Smith, D.J., Choyke, W.J., Morkoc, H., J. Vac. Sci. Technol. B, 9, 1924 (1991).Google Scholar
[11] Lin, M.E., Strite, S., Agarwal, A., Salvador, A., Zhou, G.L., Teraguchi, N., Rockett, A. and Morkoq, H., Appl. Phys. Lett. 62, 702 (1993).Google Scholar
[12] Wickenden, D.K., Faulkner, K.R., Brander, R. W., and Isherwood, B.J., J. Crystal Growth, 9, 158 (1971).Google Scholar
[13] Akasaki, I., Amano, H., Koide, Y., Hiramatsu, K., and Sawaki, N., J. Crystal Growth, 98, 209 (1989).Google Scholar
[14] Powell, R.C., Tomasch, G.A., Kim, Y.W., Thornton, J.A., Greene, J.E., Mater. Res. Soc. Symp. Proc. vol.162, 525 (1990).Google Scholar
[15] Powell, R. C., Lee, N.-E., Kim, Y.-W. and Greene, J. E., J. Appl. Phys., 73, 189 (1993).Google Scholar
[16] Qian, W., Skowronski, M., Graef, M. D., Doverspike, K., Rowland, L. B. and Gaskill, D. K., Appl. Phys. Lett., 66, 1252 (1995).Google Scholar
[17] Yoshida, S., Misawa, S., and Gonda, S., J. Vac. Sci. Technol. B, 1, 250 (1983).Google Scholar
[18] Kuznia, J. N., Khan, M. A., Olson, D. T., Kaplan, R., and Freitas, J.A., Jr., J. Appl. Phys.,73, 4700 (1993).Google Scholar
[19] Rowland, L. B., Doverspike, K., Giordana, A., Fatemi, M., Gaskill, D. K., Skowronski, M., and Freitas, J. A. Jr., Inst. Phys. Conf. Ser., 137, 429 (1993).Google Scholar
[20] Doverspike, K., Rowland, L. B., Gaskill, D. K., Binari, S. C. and Freitas, J. J.A., J. Electron. Mater., 24, 269 (1995).Google Scholar
[21] Hiramatsu, K., Itoh, S., Amano, H., Akasaki, I., Kuwano, N., Shiraishi, T. and Oki, K., J. Crystal Growth 115, 628 (1991).Google Scholar
[22] Lei, T., Ludwig, K.F., and Moustakis, T.D., J. Appl. Phys. 74, 4430 (1993).Google Scholar
[23] Liliental-Weber, Z., Sohn, H., Newman, N. and Washburn, J., J. Vac. Sci. technol. B 13, 1578 (1995).Google Scholar
[24] Ponce, F.A., Major, J.S., Plano, W.E. and Welch, D.F., Appl. Phys. Lett. 65, 2302 (1994).Google Scholar
[25] Smith, D.J., Chandrasekhar, D., Sverdlov, B., Botchkarev, A., Salvador, A. and Morkoc, H., Appl. Phys. Lett. 67 1830 (1995).Google Scholar
[26] Qian, W., Skowronski, M., Doverspike, K., Rowland, L. B. and Gaskill, D. K., J. Crystal Growth, 151, 396 (1995).Google Scholar
[27] Chandrasekhar, D., Smith, D.J., Strite, S., Lin, M.E. and Morkoc, H., J. Crystal Growth 152, 135 (1995).Google Scholar
[28] Fang, S. F., Adomi, K., Iyer, S., Morkoq, H., Zabel, H., Choi, C., and Otsuka, N., J. Appl. Phys. 68, R31 (1990).Google Scholar
[29] Hiramatsu, K., Detchprohm, T. and Akasaki, I., Lpn. J. Appl. phys. 32, (1993) 1528.Google Scholar
[30] Qian, W., Rohrer, G.S., Skowronski, M., Doverspike, K., Rowland, L. B. and Gaskill, D. K., Appl. Phys. Lett. 67, 2284 (1995).Google Scholar
[31] Bhide, V. G., Physica, 24, 817 (1958).Google Scholar
[32] Hobgood, H.M., Barrett, D.L., McHugh, J.P., Clarke, R.C., Sriram, S., Burk, A.A., Greggi, J., Brandt, C.D., Hopkins, R. H. and Choyke, W. J., J. Crystal Growth, 137, 181 (1994).Google Scholar
[33] Takasu, S. and Shimanuki, S., J. Crystal Growth, 24/25, 641 (1974).Google Scholar
[34] Powell, J. A., Neudeck, P. G., Larkin, D. J., Yang, J. W. and Pirouz, P., Inst. Phys. Conf. Ser., 137, 161 (1994).Google Scholar
[35] Frank, F.C., Acta Cryst., 4, 497 (1951).Google Scholar
[36] Hirth, J.P. and Pound, G.M., in: Progress in Materials Science 11, Condensation and Evaporation, Ed. B., Chalmers (Pergamon Press, New York, 1963).Google Scholar
[37] Wu, X.H., Kapolnek, D., Tarsa, E.J., Heying, B., Keller, S., Keller, B.P., Mishra, U.K., DenBaars, S.P. and Speck, J.S., Appl. Phys. Lett., 68, 1371 (1996).Google Scholar
[38] Rohrer, G.S., Payne, J., Qian, W., Skowronski, M., Doverspike, K., Rowland, L. B., and Gaskill, D. K., Mater. Res. Soc. Symp. Proc. (in press).Google Scholar
[39] Chernov, A.A., Modem Crystallography III: Crystal Growth (Springer, Berlin, 1984).Google Scholar