Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:33:22.661Z Has data issue: false hasContentIssue false

Structural Characterization of Microcrystalline Silicon Solar Cells Fabricated by Conventional RF-PECVD

Published online by Cambridge University Press:  01 February 2011

Liwei Li
Affiliation:
Energy Photovoltaics, Inc., 276 Bakers Basin Road, Lawrenceville, NJ 08648
Yuan-Min Li
Affiliation:
Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102
J. A. Anna Selvan
Affiliation:
Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102
Alan E. Delahoy
Affiliation:
Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102
Roland A. Levy
Affiliation:
Energy Photovoltaics, Inc., 276 Bakers Basin Road, Lawrenceville, NJ 08648
Get access

Abstract

Absttact:

Direct structural characterization of single junction p-i-n type μc-Si:H solar cells prepared in a single chamber, batch process type RF-PECVD system has been carried out using Raman scattering, XRD, and AFM. The overall degree of microcrystallinity of μc-Si:H i-layers is presented in terms of the ratio of peak intensities (Ic/Ia) of Raman shift at around 520 cm-1 and 480 cm-1, respectively. Strong correlations among device performance, i-layer structural properties, and uniformity have been established using information provided by such direct characterization. Our data support the notion that stable, high quality μc-Si i-layers are grown near the ‘edge’ of microcrystalline-to-amorphous phase transition. Solar cells made from such optimal areas exhibit moderate microcrystallinity (moderate Ic/Ia values). Preferential orientation corresponding to Si (220) planes was observed on those optimal solar cells, which also exhibit less-regular surface morphologies and lower surface roughness compared to that observed on solar cells with mixed-phase or highly crystalline Si:H i-layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shah, A., Meier, J., Vallat-Sauvain, E., Droz, C., Kroll, U., Wyrsch, N., Guillet, J., and Graf, U., Thin Solid Films 403-404, 179 (2002).Google Scholar
2. Vetterl, O., Finger, F., Carius, R., Hapke, P., Houben, L., Kluth, O., Lambertz, A., Muck, A., Rech, B., and Wagner, H., Sol. Energy Mater. & Sol. Cells 62, 97 (2000).Google Scholar
3. Ross, C., Herion, J., and Wagner, H., J. Non-Cryst. Solids 266-269, 69 (2000).Google Scholar
4. Vallat-Sauvain, E., Kroll, U., Meier, J., Shah, A., and Pohl, J., J. Appl. Phys. 87, 3137 (2000).Google Scholar
5. Mori, K., Yasuda, T., Nishizawa, M., Yamasaki, S., and Tanaka, K., Jpn. J. Appl. Phys. 39, 6647 (2000).Google Scholar
6. Nasuno, Y., Kondo, M., and Matsuda, A., Jpn. J. Appl. Phys. 40, L303 (2001).Google Scholar
7. Bailat, J., Vallat-Sauvain, E., Feitknecht, L., Droz, C., and Shah, A., J. Non-Cryst. Solids 299-302, 1219 (2002).Google Scholar
8. Guha, S., Yang, J., Williamson, D. L., Lubianiker, Y., Cohen, J. D., and Mahan, A. H., Appl. Phys. Lett. 74, 1860 (1999).Google Scholar
9. Ferlauto, A. S., Koval, R. J., Wronski, C. R., and Collins, R. W., Appl. Phys. Lett. 80, 2666 (2002).Google Scholar
10. Matsuda, A., Kumagai, K., and Tanaka, K., Jpn. J. Appl. Phys. 22, L34 (1982).Google Scholar
11. Veprek, S., Iqbal, Z., Kuhne, O., Capezzuto, P., Sarott, F. A., and Gimzewski, J. K., J. Phys. C 16, 6241 (1983).Google Scholar
12. Nakahata, K., Miida, A., Kamiya, T., Maeda, Y., Fortmann, C. M., and Shimizu, I., Jpn. J. Appl. Phys. 37, L1026 (1998).Google Scholar