Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T15:01:36.219Z Has data issue: false hasContentIssue false

The Structural Characterization of a Series of Uranium-containing Gadolinium Zirconates

Published online by Cambridge University Press:  23 March 2012

Daniel J. Gregg
Affiliation:
Institute of Materials Engineering, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
Yingjie Zhang
Affiliation:
Institute of Materials Engineering, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
Zhaoming Zhang
Affiliation:
Institute of Materials Engineering, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
Inna Karatchevtseva
Affiliation:
Institute of Materials Engineering, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
Mark G. Blackford
Affiliation:
Institute of Materials Engineering, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
Gerry Triani
Affiliation:
Institute of Materials Engineering, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
Gregory R. Lumpkin
Affiliation:
Institute of Materials Engineering, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
Eric R. Vance
Affiliation:
Institute of Materials Engineering, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
Get access

Abstract

A series of uranium-containing gadolinium zirconate samples have been fabricated at 1723 K in air. X-ray diffraction and Raman spectroscopy have confirmed pyrochlore or defect fluorite structures, while diffuse reflectance, X-ray absorption near edge structure and X-ray photoelectron spectroscopies indicate a predominantly U6+ oxidation state, even when Ca2+ was added to charge balance for U4+. The results demonstrate the potential of gadolinium zirconates as host materials for actinides.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Nästren, C., Jardin, R., Somers, J., Walter, M., and Brendebach, B., J. Solid State Chem. 182, 1 (2009).10.1016/j.jssc.2008.09.017Google Scholar
2 Mandal, B.P., Pandey, M., and Tyagi, A.K., J. Nucl. Mater. 406, 238 (2010).10.1016/j.jnucmat.2010.08.042Google Scholar
3 Stefanovsky, S.V., Yudintsev, S.V., and Livshits, T.S., Mater. Sci. Eng. 9, 1 (2010).Google Scholar
4 Zhang, J., Lian, J., Zhang, F., Wang, J., Fuentes, A.F., and Ewing, R.C., J. Phys. Chem. C. 114, 11810 (2010).10.1021/jp103371jGoogle Scholar
5 Sickafus, K.E., Minervini, L., Grimes, R.W., Valdez, J.A., Ishimura, M., Li, F., McClellan, K.J., and Hartmann, T., Science 289, 748 (2000).10.1126/science.289.5480.748Google Scholar
6 Ewing, R.C., Weber, W.J., and Lian, J., J. Appl. Phys. 95, 5949 (2004).10.1063/1.1707213Google Scholar
7 Subramanian, M.A., Aravamudan, G., and Subba Rao, G.V., Prog. Solid State Chem. 15, 55 (1983).10.1016/0079-6786(83)90001-8Google Scholar
8 Govindan Kutty, K.V., Asuvathraman, R., Raja Madhavan, R., and Jena, H.., J. Phys. Chem. Solids 66, 596 (2005).10.1016/j.jpcs.2004.06.066Google Scholar
9 Kulkarni, N.K., Sampath, S., and Venugopal, V., J. Nucl. Mater. 281, 248 (2000).10.1016/S0022-3115(00)00336-6Google Scholar
10 James, M., Carter, M.L., Zhang, Z., Zhang, Y., Wallwork, K.S., Avdeev, M., and Vance, E.R., J. Am. Ceram. Soc. 93, 3464 (2010).10.1111/j.1551-2916.2010.03871.xGoogle Scholar
11 Wendlandt, W.W., and Hecht, H.G., Reflectance Spectroscopy. (Wiley Interscience, New York, 1966).Google Scholar
12 Ravel, B., and Newville, M., J. Synchrotron Rad. 12, 537 (2005).10.1107/S0909049505012719Google Scholar
13 Bevan, D.J.M., Summerville, E., in: Gschneidner, K.A. Jr., Eyring, L. (Eds.), Handbook on the Physics and Chemistry of Rare Earths, vol. 3, p. 401 (North-Holland, Amsterdam, 1979).Google Scholar
14 Scheetz, B.E., and White, W.B., J. Am. Ceram. Soc. 62, 468 (1979).10.1111/j.1151-2916.1979.tb19107.xGoogle Scholar
15 Vandenborre, M.T., Husson, E., Chatry, J.P., and Michel, D., J. Raman Spec. 14, 63 (1983).10.1002/jrs.1250140202Google Scholar
16 Glerup, M., Faurskov Nielsen, O., and Poulsen, F.W., J. Solid State Chem. 160, 25 (2001).10.1006/jssc.2000.9142Google Scholar
17 Mandal, B.P., Banerji, A., Sathe, V., Deb, S.K., and Tyagi, A.K., J. Solid State Chem. 180, 2643 (2007).10.1016/j.jssc.2007.07.007Google Scholar
18 Palacios, M.L., and Taylor, S.H., Appl. Spectroscopy. 54, 1372 (2000).10.1366/0003702001951057Google Scholar
19 Stefaniak, E.A., Alsecz, A., Sajo, I.E., Worobiec, A., Mathe, Z., Torok, S., and Van Grieken, R., J. Nucl. Mater. 381, 278 (2008).10.1016/j.jnucmat.2008.08.036Google Scholar
20 Keramidas, V.G., and White, W.B., J. Chem. Phys. 59, 1561 (1973).10.1063/1.1680227Google Scholar
21 Carter, M.L., Li, H., Zhang, Y., Vance, E.R., and Mitchell, D.R.G., J. Nucl. Mater. 384, 322 (2009).10.1016/j.jnucmat.2008.12.042Google Scholar
22 Finnie, K.S., Zhang, Z., Vance, E.R., and Carter, M.L., J. Nucl. Mater. 317, 46 (2003).10.1016/S0022-3115(03)00004-7Google Scholar
23 Zhang, Y., Vance, E.R., Finnie, K.S., Begg, B.D., and Carter, M.L., in Recent Advances in Actinide Science, pp. 343 (Edited by May, I., Bryan, N.D., and Alvares, R.. Royal Society of Chemistry, London, U.K., 2006).Google Scholar