No CrossRef data available.
Article contents
Structural Characterization and Ionic Conductivity of Metastable Gd2(Ti0.65Zr0.35)2O7 Powders Prepared by Mechanical Milling
Published online by Cambridge University Press: 26 February 2011
Abstract
We analyze in this work the influence of ordering on the oxygen ion dynamics in the ionic conductor Gd2(Ti0.65Zr0.35)2O7, prepared by mechanical milling. As-prepared powder phase presents a metastable anion deficient fluorite-type of structure below 800°C becoming a disordered pyrochlore above this temperature. Such phase transformation implies a significant increase in the ionic conductivity of this material as a result of a systematic decrease in the activation energy for the dc conductivity, from 1.23 to 0.78 eV. Electrical conductivity relaxation is well described by the Kohlrausch-Williams-Watts (KWW) stretched exponential function with the fractional exponent n decreasing systematically with increasing sintering temperature (increasing ordering) as a result of decreasing ion-ion interactions in better ordered samples.
- Type
- Research Article
- Information
- MRS Online Proceedings Library (OPL) , Volume 972: Symposium AA – Solid-State Ionics—2006 , 2006 , 0972-AA09-04
- Copyright
- Copyright © Materials Research Society 2007